Descent3/netgames/dmfc/encryption.cpp

375 lines
6.8 KiB
C++
Raw Normal View History

2024-04-16 03:43:29 +00:00
/*
* $Logfile: /DescentIII/Main/dmfc/encryption.cpp $
* $Revision: 1.1.1.1 $
* $Date: 2003/08/26 03:57:21 $
* $Author: kevinb $
*
* header file for ICE encryption class
*
* $Log: encryption.cpp,v $
* Revision 1.1.1.1 2003/08/26 03:57:21 kevinb
* initial 1.5 import
*
*
* 2 7/08/99 2:37a Jeff
* created encryption class based off of ICE encryption
*
* $NoKeywords: $
*/
#include "encryption.h"
class IceSubkey
{
public:
unsigned long val[3];
};
// the S-boxes
static unsigned long ice_sbox[4][1024];
static int ice_sboxes_initialised = 0;
// modulo values for the S-boxes
static const int ice_smod[4][4] =
{
{333, 313, 505, 369},
{379, 375, 319, 391},
{361, 445, 451, 397},
{397, 425, 395, 505}
};
// XOR values for the S-boxes
static const int ice_sxor[4][4] =
{
{0x83, 0x85, 0x9b, 0xcd},
{0xcc, 0xa7, 0xad, 0x41},
{0x4b, 0x2e, 0xd4, 0x33},
{0xea, 0xcb, 0x2e, 0x04}
};
// Permutation values for the P-box
static const unsigned long ice_pbox[32] =
{
0x00000001, 0x00000080, 0x00000400, 0x00002000,
0x00080000, 0x00200000, 0x01000000, 0x40000000,
0x00000008, 0x00000020, 0x00000100, 0x00004000,
0x00010000, 0x00800000, 0x04000000, 0x20000000,
0x00000004, 0x00000010, 0x00000200, 0x00008000,
0x00020000, 0x00400000, 0x08000000, 0x10000000,
0x00000002, 0x00000040, 0x00000800, 0x00001000,
0x00040000, 0x00100000, 0x02000000, 0x80000000
};
// key rotation schedule
static const int ice_keyrot[16] =
{
0, 1, 2, 3, 2, 1, 3, 0,
1, 3, 2, 0, 3, 1, 0, 2
};
//
// 8-bit Galois Field multiplication of a by b, modulo m.
// Just like arithmetic multiplication, except that additions and
// subtractions are replaced by XOR.
//
static uint gf_mult(uint a,uint b,uint m)
{
uint res = 0;
while(b)
{
if(b&1)
res ^= a;
a <<= 1;
b >>= 1;
if(a>=256)
a ^= m;
}
return (res);
}
//
// Galois Field exponentiation.
// Raise the base to the power of 7, modulo m.
//
static unsigned long gf_exp7(uint b, uint m)
{
uint x;
if(b==0)
return 0;
x = gf_mult (b, b, m);
x = gf_mult (b, x, m);
x = gf_mult (x, x, m);
return (gf_mult (b, x, m));
}
//
// Carry out the ICE 32-bit P-box permutation.
//
static unsigned long ice_perm32 (unsigned long x)
{
unsigned long res = 0;
const unsigned long *pbox = ice_pbox;
while(x)
{
if(x&1)
res |= *pbox;
pbox++;
x >>= 1;
}
return (res);
}
//
// Initialise the ICE S-boxes.
// This only has to be done once.
//
static void ice_sboxes_init(void)
{
int i;
for(i=0;i<1024;i++)
{
int col=(i>>1)&0xff;
int row=(i&0x1)|((i&0x200)>>8);
unsigned long x;
x = gf_exp7(col^ice_sxor[0][row],ice_smod[0][row])<<24;
ice_sbox[0][i] = ice_perm32 (x);
x = gf_exp7(col^ice_sxor[1][row],ice_smod[1][row])<<16;
ice_sbox[1][i] = ice_perm32 (x);
x = gf_exp7(col^ice_sxor[2][row],ice_smod[2][row])<<8;
ice_sbox[2][i] = ice_perm32 (x);
x = gf_exp7(col^ice_sxor[3][row],ice_smod[3][row]);
ice_sbox[3][i] = ice_perm32 (x);
}
}
//
// Create a new ICE key.
//
IceKey::IceKey(int n)
{
if(!ice_sboxes_initialised)
{
ice_sboxes_init();
ice_sboxes_initialised = 1;
}
if(n<1)
{
_size = 1;
_rounds = 8;
}else{
_size = n;
_rounds = n*16;
}
_keysched = new IceSubkey[_rounds];
}
//
// Destroy an ICE key.
//
IceKey::~IceKey ()
{
int i, j;
for(i=0;i<_rounds;i++)
{
for(j=0;j<3;j++)
{
_keysched[i].val[j] = 0;
}
}
_rounds = _size = 0;
delete[] _keysched;
}
//
// The single round ICE f function.
//
static unsigned long ice_f(unsigned long p,const IceSubkey *sk)
{
unsigned long tl, tr; /* Expanded 40-bit values */
unsigned long al, ar; /* Salted expanded 40-bit values */
// Left half expansion
tl = ((p >> 16) & 0x3ff) | (((p >> 14) | (p << 18)) & 0xffc00);
// Right half expansion
tr = (p & 0x3ff) | ((p << 2) & 0xffc00);
// Perform the salt permutation
al = sk->val[2] & (tl ^ tr);
ar = al ^ tr;
al ^= tl;
al ^= sk->val[0]; // XOR with the subkey
ar ^= sk->val[1];
// S-box lookup and permutation
return (ice_sbox[0][al>>10] | ice_sbox[1][al & 0x3ff] |
ice_sbox[2][ar>>10] | ice_sbox[3][ar & 0x3ff]);
}
//
// Encrypt a block of 8 bytes of data with the given ICE key.
//
void IceKey::encrypt(const ubyte *ptext,ubyte *ctext) const
{
int i;
unsigned long l,r;
l = (((unsigned long) ptext[0]) << 24) |
(((unsigned long) ptext[1]) << 16) |
(((unsigned long) ptext[2]) << 8) | ptext[3];
r = (((unsigned long) ptext[4]) << 24) |
(((unsigned long) ptext[5]) << 16) |
(((unsigned long) ptext[6]) << 8) | ptext[7];
for(i=0;i<_rounds;i+=2)
{
l ^= ice_f(r,&_keysched[i]);
r ^= ice_f(l,&_keysched[i+1]);
}
for(i=0;i<4;i++)
{
ctext[3 - i] = (ubyte)r&0xff;
ctext[7 - i] = (ubyte)l&0xff;
r >>= 8;
l >>= 8;
}
}
//
// Decrypt a block of 8 bytes of data with the given ICE key.
//
void IceKey::decrypt(const ubyte *ctext,ubyte *ptext) const
{
int i;
unsigned long l,r;
l = (((unsigned long) ctext[0]) << 24) |
(((unsigned long) ctext[1]) << 16) |
(((unsigned long) ctext[2]) << 8) | ctext[3];
r = (((unsigned long) ctext[4]) << 24) |
(((unsigned long) ctext[5]) << 16) |
(((unsigned long) ctext[6]) << 8) | ctext[7];
for(i=_rounds-1;i>0;i-=2)
{
l ^= ice_f(r,&_keysched[i]);
r ^= ice_f(l,&_keysched[i-1]);
}
for(i=0;i<4;i++)
{
ptext[3 - i] = (ubyte)r&0xff;
ptext[7 - i] = (ubyte)l&0xff;
r >>= 8;
l >>= 8;
}
}
//
// Set 8 rounds [n, n+7] of the key schedule of an ICE key.
//
void IceKey::scheduleBuild(unsigned short *kb,int n,const int *keyrot)
{
int i;
for(i=0;i<8;i++)
{
int j;
int kr = keyrot[i];
IceSubkey *isk = &_keysched[n+i];
for(j=0;j<3;j++)
isk->val[j] = 0;
for(j=0;j<15;j++)
{
int k;
unsigned long *curr_sk = &isk->val[j%3];
for(k=0;k<4;k++)
{
ushort *curr_kb = &kb[(kr+k)&3];
int bit = *curr_kb&1;
*curr_sk = (*curr_sk<<1)|bit;
*curr_kb = (*curr_kb>>1)|((bit^1)<<15);
}
}
}
}
//
// Set the key schedule of an ICE key.
//
void IceKey::set(const ubyte *key)
{
int i;
if(_rounds==8)
{
ushort kb[4];
for(i=0;i<4;i++)
{
kb[3-i] = (key[i*2]<<8)|key[i*2+1];
}
scheduleBuild(kb,0,ice_keyrot);
return;
}
for(i=0;i<_size;i++)
{
int j;
ushort kb[4];
for(j=0;j<4;j++)
{
kb[3-j] = (key[i*8+j*2]<<8)|key[i*8+j*2+1];
scheduleBuild(kb,i*8,ice_keyrot);
scheduleBuild(kb,_rounds-8-i*8,&ice_keyrot[8]);
}
}
}
//
// Return the key size, in bytes.
//
int IceKey::keySize(void) const
{
return (_size*8);
}
//
// Return the block size, in bytes.
//
int IceKey::blockSize(void) const
{
return 8;
}