mirror of
https://github.com/kevinbentley/Descent3.git
synced 2025-01-22 11:28:56 +00:00
build: split osiris_vector.h into header and implementation
Both e.g. AIGame3.cpp and DallasFuncs.cpp include ``osiris_vector.h``. Right now, this is not a problem because DallasFuncs.cpp is not compiled itself, but included from AIGame3.cpp, in other words, it is all just one translation unit. I have a plan to do away with ``#include "DallasFuncs.cpp"``, which means the linker invocation for AIGame3.so will have at least two translation units, and thus two definitions of the osiris vector functions, which is not allowed. This also has the side-effect to reduce compile-time a little, from 1m57.5s to 1m48.7s on my 1135G7 CPU using `make -j8`.
This commit is contained in:
parent
ea3f11b6b5
commit
006c2fb4ec
@ -74,9 +74,13 @@ set(SCRIPTS
|
||||
# COMMENT "Copy script/data/demohog directory"
|
||||
#)
|
||||
|
||||
add_library(dallas STATIC osiris_vector.cpp)
|
||||
target_link_libraries(dallas fix misc)
|
||||
|
||||
foreach(SCRIPT ${SCRIPTS})
|
||||
add_library(${SCRIPT} MODULE ${CPPS} ${HEADERS} "${SCRIPT}.cpp")
|
||||
target_link_libraries(${SCRIPT}
|
||||
dallas
|
||||
fix
|
||||
misc
|
||||
)
|
||||
|
813
scripts/osiris_vector.cpp
Normal file
813
scripts/osiris_vector.cpp
Normal file
@ -0,0 +1,813 @@
|
||||
/*
|
||||
* Descent 3
|
||||
* Copyright (C) 2024 Parallax Software
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include <cstring>
|
||||
#include "osiris_vector.h"
|
||||
|
||||
void vm_AverageVector(vector *a, int num) {
|
||||
// Averages a vector. ie divides each component of vector a by num
|
||||
// assert (num!=0);
|
||||
|
||||
a->x = a->x / (float)num;
|
||||
a->y = a->y / (float)num;
|
||||
a->z = a->z / (float)num;
|
||||
}
|
||||
|
||||
void vm_AddVectors(vector *result, vector *a, vector *b) {
|
||||
// Adds two vectors. Either source can equal dest
|
||||
|
||||
result->x = a->x + b->x;
|
||||
result->y = a->y + b->y;
|
||||
result->z = a->z + b->z;
|
||||
}
|
||||
|
||||
void vm_SubVectors(vector *result, const vector *a, const vector *b) {
|
||||
// Subtracts second vector from first. Either source can equal dest
|
||||
|
||||
result->x = a->x - b->x;
|
||||
result->y = a->y - b->y;
|
||||
result->z = a->z - b->z;
|
||||
}
|
||||
|
||||
float vm_VectorDistance(const vector *a, const vector *b) {
|
||||
// Given two vectors, returns the distance between them
|
||||
|
||||
vector dest;
|
||||
float dist;
|
||||
|
||||
vm_SubVectors(&dest, a, b);
|
||||
dist = vm_GetMagnitude(&dest);
|
||||
return dist;
|
||||
}
|
||||
float vm_VectorDistanceQuick(vector *a, vector *b) {
|
||||
// Given two vectors, returns the distance between them
|
||||
|
||||
vector dest;
|
||||
float dist;
|
||||
|
||||
vm_SubVectors(&dest, a, b);
|
||||
dist = vm_GetMagnitudeFast(&dest);
|
||||
return dist;
|
||||
}
|
||||
|
||||
// Calculates the perpendicular vector given three points
|
||||
// Parms: n - the computed perp vector (filled in)
|
||||
// v0,v1,v2 - three clockwise vertices
|
||||
void vm_GetPerp(vector *n, vector *a, vector *b, vector *c) {
|
||||
// Given 3 vertices, return the surface normal in n
|
||||
// IMPORTANT: B must be the 'corner' vertex
|
||||
|
||||
vector x, y;
|
||||
|
||||
vm_SubVectors(&x, b, a);
|
||||
vm_SubVectors(&y, c, b);
|
||||
|
||||
vm_CrossProduct(n, &x, &y);
|
||||
}
|
||||
|
||||
// Calculates the (normalized) surface normal give three points
|
||||
// Parms: n - the computed surface normal (filled in)
|
||||
// v0,v1,v2 - three clockwise vertices
|
||||
// Returns the magnitude of the normal before it was normalized.
|
||||
// The bigger this value, the better the normal.
|
||||
float vm_GetNormal(vector *n, vector *v0, vector *v1, vector *v2) {
|
||||
vm_GetPerp(n, v0, v1, v2);
|
||||
|
||||
return vm_VectorNormalize(n);
|
||||
}
|
||||
|
||||
// Does a simple dot product calculation
|
||||
float vm_DotProduct(vector *u, vector *v) { return (u->x * v->x) + (u->y * v->y) + (u->z * v->z); }
|
||||
|
||||
// Scales all components of vector v by value s and stores result in vector d
|
||||
// dest can equal source
|
||||
void vm_ScaleVector(vector *d, vector *v, float s) {
|
||||
d->x = (v->x * s);
|
||||
d->y = (v->y * s);
|
||||
d->z = (v->z * s);
|
||||
}
|
||||
|
||||
void vm_ScaleAddVector(vector *d, vector *p, vector *v, float s) {
|
||||
// Scales all components of vector v by value s
|
||||
// adds the result to p and stores result in vector d
|
||||
// dest can equal source
|
||||
|
||||
d->x = p->x + (v->x * s);
|
||||
d->y = p->y + (v->y * s);
|
||||
d->z = p->z + (v->z * s);
|
||||
}
|
||||
|
||||
void vm_DivVector(vector *dest, vector *src, float n) {
|
||||
// Divides a vector into n portions
|
||||
// Dest can equal src
|
||||
|
||||
// assert (n!=0);
|
||||
|
||||
dest->x = src->x / n;
|
||||
dest->y = src->y / n;
|
||||
dest->z = src->z / n;
|
||||
}
|
||||
|
||||
void vm_CrossProduct(vector *dest, vector *u, vector *v) {
|
||||
// Computes a cross product between u and v, returns the result
|
||||
// in Normal. Dest cannot equal source.
|
||||
|
||||
dest->x = (u->y * v->z) - (u->z * v->y);
|
||||
dest->y = (u->z * v->x) - (u->x * v->z);
|
||||
dest->z = (u->x * v->y) - (u->y * v->x);
|
||||
}
|
||||
|
||||
// Normalize a vector.
|
||||
// Returns: the magnitude before normalization
|
||||
float vm_VectorNormalize(vector *a) {
|
||||
float mag;
|
||||
|
||||
mag = vm_GetMagnitude(a);
|
||||
|
||||
if (mag > 0)
|
||||
*a /= mag;
|
||||
else {
|
||||
*a = Zero_vector;
|
||||
a->x = 1.0;
|
||||
mag = 0.0f;
|
||||
}
|
||||
|
||||
return mag;
|
||||
}
|
||||
|
||||
float vm_GetMagnitude(vector *a) {
|
||||
float f;
|
||||
|
||||
f = (a->x * a->x) + (a->y * a->y) + (a->z * a->z);
|
||||
|
||||
return (sqrt(f));
|
||||
}
|
||||
|
||||
void vm_ClearMatrix(matrix *dest) { memset(dest, 0, sizeof(matrix)); }
|
||||
|
||||
void vm_MakeIdentity(matrix *dest) {
|
||||
memset(dest, 0, sizeof(matrix));
|
||||
dest->rvec.x = dest->uvec.y = dest->fvec.z = 1.0;
|
||||
}
|
||||
void vm_MakeInverseMatrix(matrix *dest) {
|
||||
memset((void *)dest, 0, sizeof(matrix));
|
||||
dest->rvec.x = dest->uvec.y = dest->fvec.z = -1.0;
|
||||
}
|
||||
|
||||
void vm_TransposeMatrix(matrix *m) {
|
||||
// Transposes a matrix in place
|
||||
|
||||
float t;
|
||||
|
||||
t = m->uvec.x;
|
||||
m->uvec.x = m->rvec.y;
|
||||
m->rvec.y = t;
|
||||
t = m->fvec.x;
|
||||
m->fvec.x = m->rvec.z;
|
||||
m->rvec.z = t;
|
||||
t = m->fvec.y;
|
||||
m->fvec.y = m->uvec.z;
|
||||
m->uvec.z = t;
|
||||
}
|
||||
|
||||
void vm_MatrixMulVector(vector *result, vector *v, matrix *m) {
|
||||
// Rotates a vector thru a matrix
|
||||
|
||||
// assert(result != v);
|
||||
|
||||
result->x = *v * m->rvec;
|
||||
result->y = *v * m->uvec;
|
||||
result->z = *v * m->fvec;
|
||||
}
|
||||
|
||||
// Multiply a vector times the transpose of a matrix
|
||||
void vm_VectorMulTMatrix(vector *result, vector *v, matrix *m) {
|
||||
// assert(result != v);
|
||||
|
||||
result->x = vm_Dot3Vector(m->rvec.x, m->uvec.x, m->fvec.x, v);
|
||||
result->y = vm_Dot3Vector(m->rvec.y, m->uvec.y, m->fvec.y, v);
|
||||
result->z = vm_Dot3Vector(m->rvec.z, m->uvec.z, m->fvec.z, v);
|
||||
}
|
||||
|
||||
void vm_MatrixMul(matrix *dest, matrix *src0, matrix *src1) {
|
||||
// For multiplying two 3x3 matrices together
|
||||
|
||||
// assert((dest != src0) && (dest != src1));
|
||||
|
||||
dest->rvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->rvec);
|
||||
dest->uvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->uvec);
|
||||
dest->fvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->fvec);
|
||||
|
||||
dest->rvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->rvec);
|
||||
dest->uvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->uvec);
|
||||
dest->fvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->fvec);
|
||||
|
||||
dest->rvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->rvec);
|
||||
dest->uvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->uvec);
|
||||
dest->fvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->fvec);
|
||||
}
|
||||
|
||||
// Multiply a matrix times the transpose of a matrix
|
||||
void vm_MatrixMulTMatrix(matrix *dest, matrix *src0, matrix *src1) {
|
||||
// For multiplying two 3x3 matrices together
|
||||
|
||||
// assert((dest != src0) && (dest != src1));
|
||||
|
||||
dest->rvec.x = src0->rvec.x * src1->rvec.x + src0->uvec.x * src1->uvec.x + src0->fvec.x * src1->fvec.x;
|
||||
dest->uvec.x = src0->rvec.x * src1->rvec.y + src0->uvec.x * src1->uvec.y + src0->fvec.x * src1->fvec.y;
|
||||
dest->fvec.x = src0->rvec.x * src1->rvec.z + src0->uvec.x * src1->uvec.z + src0->fvec.x * src1->fvec.z;
|
||||
|
||||
dest->rvec.y = src0->rvec.y * src1->rvec.x + src0->uvec.y * src1->uvec.x + src0->fvec.y * src1->fvec.x;
|
||||
dest->uvec.y = src0->rvec.y * src1->rvec.y + src0->uvec.y * src1->uvec.y + src0->fvec.y * src1->fvec.y;
|
||||
dest->fvec.y = src0->rvec.y * src1->rvec.z + src0->uvec.y * src1->uvec.z + src0->fvec.y * src1->fvec.z;
|
||||
|
||||
dest->rvec.z = src0->rvec.z * src1->rvec.x + src0->uvec.z * src1->uvec.x + src0->fvec.z * src1->fvec.x;
|
||||
dest->uvec.z = src0->rvec.z * src1->rvec.y + src0->uvec.z * src1->uvec.y + src0->fvec.z * src1->fvec.y;
|
||||
dest->fvec.z = src0->rvec.z * src1->rvec.z + src0->uvec.z * src1->uvec.z + src0->fvec.z * src1->fvec.z;
|
||||
}
|
||||
|
||||
matrix operator*(matrix src0, matrix src1) {
|
||||
// For multiplying two 3x3 matrices together
|
||||
matrix dest;
|
||||
|
||||
dest.rvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.rvec);
|
||||
dest.uvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.uvec);
|
||||
dest.fvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.fvec);
|
||||
|
||||
dest.rvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.rvec);
|
||||
dest.uvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.uvec);
|
||||
dest.fvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.fvec);
|
||||
|
||||
dest.rvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.rvec);
|
||||
dest.uvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.uvec);
|
||||
dest.fvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.fvec);
|
||||
|
||||
return dest;
|
||||
}
|
||||
|
||||
matrix operator*=(matrix &src0, matrix src1) { return (src0 = src0 * src1); }
|
||||
|
||||
// Computes a normalized direction vector between two points
|
||||
// Parameters: dest - filled in with the normalized direction vector
|
||||
// start,end - the start and end points used to calculate the vector
|
||||
// Returns: the distance between the two input points
|
||||
float vm_GetNormalizedDir(vector *dest, vector *end, vector *start) {
|
||||
vm_SubVectors(dest, end, start);
|
||||
return vm_VectorNormalize(dest);
|
||||
}
|
||||
|
||||
// Returns a normalized direction vector between two points
|
||||
// Just like vm_GetNormalizedDir(), but uses sloppier magnitude, less precise
|
||||
// Parameters: dest - filled in with the normalized direction vector
|
||||
// start,end - the start and end points used to calculate the vector
|
||||
// Returns: the distance between the two input points
|
||||
float vm_GetNormalizedDirFast(vector *dest, vector *end, vector *start) {
|
||||
vm_SubVectors(dest, end, start);
|
||||
return vm_VectorNormalizeFast(dest);
|
||||
}
|
||||
|
||||
float vm_GetMagnitudeFast(vector *v) {
|
||||
float a, b, c, bc;
|
||||
|
||||
a = fabs(v->x);
|
||||
b = fabs(v->y);
|
||||
c = fabs(v->z);
|
||||
|
||||
if (a < b) {
|
||||
float t = a;
|
||||
a = b;
|
||||
b = t;
|
||||
}
|
||||
|
||||
if (b < c) {
|
||||
float t = b;
|
||||
b = c;
|
||||
c = t;
|
||||
|
||||
if (a < b) {
|
||||
float t = a;
|
||||
a = b;
|
||||
b = t;
|
||||
}
|
||||
}
|
||||
|
||||
bc = (b / 4) + (c / 8);
|
||||
|
||||
return a + bc + (bc / 2);
|
||||
}
|
||||
|
||||
// Normalize a vector using an approximation of the magnitude
|
||||
// Returns: the magnitude before normalization
|
||||
float vm_VectorNormalizeFast(vector *a) {
|
||||
float mag;
|
||||
|
||||
mag = vm_GetMagnitudeFast(a);
|
||||
|
||||
if (mag == 0.0) {
|
||||
a->x = a->y = a->z = 0.0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
a->x = (a->x / mag);
|
||||
a->y = (a->y / mag);
|
||||
a->z = (a->z / mag);
|
||||
|
||||
return mag;
|
||||
}
|
||||
|
||||
// Computes the distance from a point to a plane.
|
||||
// Parms: checkp - the point to check
|
||||
// Parms: norm - the (normalized) surface normal of the plane
|
||||
// planep - a point on the plane
|
||||
// Returns: The signed distance from the plane; negative dist is on the back of the plane
|
||||
float vm_DistToPlane(vector *checkp, vector *norm, vector *planep) {
|
||||
vector t;
|
||||
|
||||
t = *checkp - *planep;
|
||||
|
||||
return t * *norm;
|
||||
}
|
||||
|
||||
float vm_GetSlope(float x1, float y1, float x2, float y2) {
|
||||
// returns the slope of a line
|
||||
float r;
|
||||
|
||||
if (y2 - y1 == 0)
|
||||
return (0.0);
|
||||
|
||||
r = (x2 - x1) / (y2 - y1);
|
||||
return (r);
|
||||
}
|
||||
|
||||
void vm_SinCosToMatrix(matrix *m, float sinp, float cosp, float sinb, float cosb, float sinh, float cosh) {
|
||||
float sbsh, cbch, cbsh, sbch;
|
||||
|
||||
sbsh = (sinb * sinh);
|
||||
cbch = (cosb * cosh);
|
||||
cbsh = (cosb * sinh);
|
||||
sbch = (sinb * cosh);
|
||||
|
||||
m->rvec.x = cbch + (sinp * sbsh); // m1
|
||||
m->uvec.z = sbsh + (sinp * cbch); // m8
|
||||
|
||||
m->uvec.x = (sinp * cbsh) - sbch; // m2
|
||||
m->rvec.z = (sinp * sbch) - cbsh; // m7
|
||||
|
||||
m->fvec.x = (sinh * cosp); // m3
|
||||
m->rvec.y = (sinb * cosp); // m4
|
||||
m->uvec.y = (cosb * cosp); // m5
|
||||
m->fvec.z = (cosh * cosp); // m9
|
||||
|
||||
m->fvec.y = -sinp; // m6
|
||||
}
|
||||
|
||||
void vm_AnglesToMatrix(matrix *m, angle p, angle h, angle b) {
|
||||
float sinp, cosp, sinb, cosb, sinh, cosh;
|
||||
|
||||
sinp = FixSin(p);
|
||||
cosp = FixCos(p);
|
||||
sinb = FixSin(b);
|
||||
cosb = FixCos(b);
|
||||
sinh = FixSin(h);
|
||||
cosh = FixCos(h);
|
||||
|
||||
vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh);
|
||||
}
|
||||
|
||||
// Computes a matrix from a vector and and angle of rotation around that vector
|
||||
// Parameters: m - filled in with the computed matrix
|
||||
// v - the forward vector of the new matrix
|
||||
// a - the angle of rotation around the forward vector
|
||||
void vm_VectorAngleToMatrix(matrix *m, vector *v, angle a) {
|
||||
float sinb, cosb, sinp, cosp, sinh, cosh;
|
||||
|
||||
sinb = FixSin(a);
|
||||
cosb = FixCos(a);
|
||||
|
||||
sinp = -v->y;
|
||||
cosp = sqrt(1.0 - (sinp * sinp));
|
||||
|
||||
if (cosp != 0.0) {
|
||||
sinh = v->x / cosp;
|
||||
cosh = v->z / cosp;
|
||||
} else {
|
||||
sinh = 0;
|
||||
cosh = 1.0;
|
||||
}
|
||||
|
||||
vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh);
|
||||
}
|
||||
|
||||
// Ensure that a matrix is orthogonal
|
||||
void vm_Orthogonalize(matrix *m) {
|
||||
// Normalize forward vector
|
||||
if (vm_VectorNormalize(&m->fvec) == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Generate right vector from forward and up vectors
|
||||
m->rvec = m->uvec ^ m->fvec;
|
||||
|
||||
// Normaize new right vector
|
||||
if (vm_VectorNormalize(&m->rvec) == 0) {
|
||||
vm_VectorToMatrix(m, &m->fvec, NULL, NULL); // error, so generate from forward vector only
|
||||
return;
|
||||
}
|
||||
|
||||
// Recompute up vector, in case it wasn't entirely perpendiclar
|
||||
m->uvec = m->fvec ^ m->rvec;
|
||||
}
|
||||
|
||||
// do the math for vm_VectorToMatrix()
|
||||
void DoVectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) {
|
||||
vector *xvec = &m->rvec, *yvec = &m->uvec, *zvec = &m->fvec;
|
||||
|
||||
// ASSERT(fvec != NULL);
|
||||
|
||||
*zvec = *fvec;
|
||||
if (vm_VectorNormalize(zvec) == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (uvec == NULL) {
|
||||
|
||||
if (rvec == NULL) { // just forward vec
|
||||
|
||||
bad_vector2:;
|
||||
|
||||
if (zvec->x == 0 && zvec->z == 0) { // forward vec is straight up or down
|
||||
|
||||
m->rvec.x = 1.0;
|
||||
m->uvec.z = (zvec->y < 0) ? 1.0 : -1.0;
|
||||
|
||||
m->rvec.y = m->rvec.z = m->uvec.x = m->uvec.y = 0;
|
||||
} else { // not straight up or down
|
||||
|
||||
xvec->x = zvec->z;
|
||||
xvec->y = 0;
|
||||
xvec->z = -zvec->x;
|
||||
|
||||
vm_VectorNormalize(xvec);
|
||||
|
||||
*yvec = *zvec ^ *xvec;
|
||||
}
|
||||
|
||||
} else { // use right vec
|
||||
|
||||
*xvec = *rvec;
|
||||
if (vm_VectorNormalize(xvec) == 0)
|
||||
goto bad_vector2;
|
||||
|
||||
*yvec = *zvec ^ *xvec;
|
||||
|
||||
// normalize new perpendicular vector
|
||||
if (vm_VectorNormalize(yvec) == 0)
|
||||
goto bad_vector2;
|
||||
|
||||
// now recompute right vector, in case it wasn't entirely perpendiclar
|
||||
*xvec = *yvec ^ *zvec;
|
||||
}
|
||||
} else { // use up vec
|
||||
|
||||
*yvec = *uvec;
|
||||
if (vm_VectorNormalize(yvec) == 0)
|
||||
goto bad_vector2;
|
||||
|
||||
*xvec = *yvec ^ *zvec;
|
||||
|
||||
// normalize new perpendicular vector
|
||||
if (vm_VectorNormalize(xvec) == 0)
|
||||
goto bad_vector2;
|
||||
|
||||
// now recompute up vector, in case it wasn't entirely perpendiclar
|
||||
*yvec = *zvec ^ *xvec;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute a matrix from one or two vectors. At least one and at most two vectors must/can be specified.
|
||||
// Parameters: m - filled in with the orienation matrix
|
||||
// fvec,uvec,rvec - pointers to vectors that determine the matrix.
|
||||
// One or two of these must be specified, with the other(s) set to NULL.
|
||||
void vm_VectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) {
|
||||
if (!fvec) { // no forward vector. Use up and/or right vectors.
|
||||
matrix tmatrix;
|
||||
|
||||
if (uvec) { // got up vector. use up and, if specified, right vectors.
|
||||
DoVectorToMatrix(&tmatrix, uvec, NULL, rvec);
|
||||
m->fvec = -tmatrix.uvec;
|
||||
m->uvec = tmatrix.fvec;
|
||||
m->rvec = tmatrix.rvec;
|
||||
return;
|
||||
} else { // no up vector. Use right vector only.
|
||||
// ASSERT(rvec);
|
||||
DoVectorToMatrix(&tmatrix, rvec, NULL, NULL);
|
||||
m->fvec = -tmatrix.rvec;
|
||||
m->uvec = tmatrix.uvec;
|
||||
m->rvec = tmatrix.fvec;
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
// ASSERT(! (uvec && rvec)); //can only have 1 or 2 vectors specified
|
||||
DoVectorToMatrix(m, fvec, uvec, rvec);
|
||||
}
|
||||
}
|
||||
|
||||
void vm_SinCos(uint16_t a, float *s, float *c) {
|
||||
if (s)
|
||||
*s = FixSin(a);
|
||||
if (c)
|
||||
*c = FixCos(a);
|
||||
}
|
||||
|
||||
// extract angles from a matrix
|
||||
angvec *vm_ExtractAnglesFromMatrix(angvec *a, matrix *m) {
|
||||
float sinh, cosh, cosp;
|
||||
|
||||
if (m->fvec.x == 0 && m->fvec.z == 0) // zero head
|
||||
a->h = 0;
|
||||
else
|
||||
a->h = FixAtan2(m->fvec.z, m->fvec.x);
|
||||
|
||||
sinh = FixSin(a->h);
|
||||
cosh = FixCos(a->h);
|
||||
|
||||
if (fabs(sinh) > fabs(cosh)) // sine is larger, so use it
|
||||
cosp = (m->fvec.x / sinh);
|
||||
else // cosine is larger, so use it
|
||||
cosp = (m->fvec.z / cosh);
|
||||
|
||||
if (cosp == 0 && m->fvec.y == 0)
|
||||
a->p = 0;
|
||||
else
|
||||
a->p = FixAtan2(cosp, -m->fvec.y);
|
||||
|
||||
if (cosp == 0) // the cosine of pitch is zero. we're pitched straight up. say no bank
|
||||
|
||||
a->b = 0;
|
||||
|
||||
else {
|
||||
float sinb, cosb;
|
||||
|
||||
sinb = (m->rvec.y / cosp);
|
||||
cosb = (m->uvec.y / cosp);
|
||||
|
||||
if (sinb == 0 && cosb == 0)
|
||||
a->b = 0;
|
||||
else
|
||||
a->b = FixAtan2(cosb, sinb);
|
||||
}
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
// returns the value of a determinant
|
||||
float calc_det_value(matrix *det) {
|
||||
return det->rvec.x * det->uvec.y * det->fvec.z - det->rvec.x * det->uvec.z * det->fvec.y -
|
||||
det->rvec.y * det->uvec.x * det->fvec.z + det->rvec.y * det->uvec.z * det->fvec.x +
|
||||
det->rvec.z * det->uvec.x * det->fvec.y - det->rvec.z * det->uvec.y * det->fvec.x;
|
||||
}
|
||||
|
||||
// computes the delta angle between two vectors.
|
||||
// vectors need not be normalized. if they are, call vm_vec_delta_ang_norm()
|
||||
// the forward vector (third parameter) can be NULL, in which case the absolute
|
||||
// value of the angle in returned. Otherwise the angle around that vector is
|
||||
// returned.
|
||||
|
||||
angle vm_DeltaAngVec(vector *v0, vector *v1, vector *fvec) {
|
||||
vector t0, t1;
|
||||
|
||||
t0 = *v0;
|
||||
t1 = *v1;
|
||||
|
||||
vm_VectorNormalize(&t0);
|
||||
vm_VectorNormalize(&t1);
|
||||
|
||||
return vm_DeltaAngVecNorm(&t0, &t1, fvec);
|
||||
}
|
||||
|
||||
// computes the delta angle between two normalized vectors.
|
||||
angle vm_DeltaAngVecNorm(vector *v0, vector *v1, vector *fvec) {
|
||||
angle a;
|
||||
|
||||
a = FixAcos(vm_DotProduct(v0, v1));
|
||||
|
||||
if (fvec) {
|
||||
vector t;
|
||||
|
||||
vm_CrossProduct(&t, v0, v1);
|
||||
if (vm_DotProduct(&t, fvec) < 0)
|
||||
a = -a;
|
||||
}
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
// Gets the real center of a polygon
|
||||
// Returns the size of the passed in stuff
|
||||
float vm_GetCentroid(vector *centroid, vector *src, int nv) {
|
||||
// ASSERT (nv>2);
|
||||
vector normal;
|
||||
float area, total_area;
|
||||
int i;
|
||||
vector tmp_center;
|
||||
|
||||
vm_MakeZero(centroid);
|
||||
|
||||
// First figure out the total area of this polygon
|
||||
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
|
||||
total_area = (vm_GetMagnitude(&normal) / 2);
|
||||
|
||||
for (i = 2; i < nv - 1; i++) {
|
||||
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
|
||||
area = (vm_GetMagnitude(&normal) / 2);
|
||||
total_area += area;
|
||||
}
|
||||
|
||||
// Now figure out how much weight each triangle represents to the overall
|
||||
// polygon
|
||||
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
|
||||
area = (vm_GetMagnitude(&normal) / 2);
|
||||
|
||||
// Get the center of the first polygon
|
||||
vm_MakeZero(&tmp_center);
|
||||
for (i = 0; i < 3; i++) {
|
||||
tmp_center += src[i];
|
||||
}
|
||||
tmp_center /= 3;
|
||||
|
||||
*centroid += (tmp_center * (area / total_area));
|
||||
|
||||
// Now do the same for the rest
|
||||
for (i = 2; i < nv - 1; i++) {
|
||||
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
|
||||
area = (vm_GetMagnitude(&normal) / 2);
|
||||
|
||||
vm_MakeZero(&tmp_center);
|
||||
|
||||
tmp_center += src[0];
|
||||
tmp_center += src[i];
|
||||
tmp_center += src[i + 1];
|
||||
|
||||
tmp_center /= 3;
|
||||
|
||||
*centroid += (tmp_center * (area / total_area));
|
||||
}
|
||||
|
||||
return total_area;
|
||||
}
|
||||
|
||||
// Gets the real center of a polygon, but uses fast magnitude calculation
|
||||
// Returns the size of the passed in stuff
|
||||
float vm_GetCentroidFast(vector *centroid, vector *src, int nv) {
|
||||
// ASSERT (nv>2);
|
||||
vector normal;
|
||||
float area, total_area;
|
||||
int i;
|
||||
vector tmp_center;
|
||||
|
||||
vm_MakeZero(centroid);
|
||||
|
||||
// First figure out the total area of this polygon
|
||||
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
|
||||
total_area = (vm_GetMagnitudeFast(&normal) / 2);
|
||||
|
||||
for (i = 2; i < nv - 1; i++) {
|
||||
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
|
||||
area = (vm_GetMagnitudeFast(&normal) / 2);
|
||||
total_area += area;
|
||||
}
|
||||
|
||||
// Now figure out how much weight each triangle represents to the overall
|
||||
// polygon
|
||||
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
|
||||
area = (vm_GetMagnitudeFast(&normal) / 2);
|
||||
|
||||
// Get the center of the first polygon
|
||||
vm_MakeZero(&tmp_center);
|
||||
for (i = 0; i < 3; i++) {
|
||||
tmp_center += src[i];
|
||||
}
|
||||
tmp_center /= 3;
|
||||
|
||||
*centroid += (tmp_center * (area / total_area));
|
||||
|
||||
// Now do the same for the rest
|
||||
for (i = 2; i < nv - 1; i++) {
|
||||
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
|
||||
area = (vm_GetMagnitudeFast(&normal) / 2);
|
||||
|
||||
vm_MakeZero(&tmp_center);
|
||||
|
||||
tmp_center += src[0];
|
||||
tmp_center += src[i];
|
||||
tmp_center += src[i + 1];
|
||||
|
||||
tmp_center /= 3;
|
||||
|
||||
*centroid += (tmp_center * (area / total_area));
|
||||
}
|
||||
|
||||
return total_area;
|
||||
}
|
||||
|
||||
// creates a completely random, non-normalized vector with a range of values from -1023 to +1024 values)
|
||||
void vm_MakeRandomVector(vector *vec) {
|
||||
vec->x = rand() - RAND_MAX / 2;
|
||||
vec->y = rand() - RAND_MAX / 2;
|
||||
vec->z = rand() - RAND_MAX / 2;
|
||||
}
|
||||
|
||||
// Given a set of points, computes the minimum bounding sphere of those points
|
||||
float vm_ComputeBoundingSphere(vector *center, vector *vecs, int num_verts) {
|
||||
// This algorithm is from Graphics Gems I. There's a better algorithm in Graphics Gems III that
|
||||
// we should probably implement sometime.
|
||||
|
||||
vector *min_x, *max_x, *min_y, *max_y, *min_z, *max_z, *vp;
|
||||
float dx, dy, dz;
|
||||
float rad, rad2;
|
||||
int i;
|
||||
|
||||
// Initialize min, max vars
|
||||
min_x = max_x = min_y = max_y = min_z = max_z = &vecs[0];
|
||||
|
||||
// First, find the points with the min & max x,y, & z coordinates
|
||||
for (i = 0, vp = vecs; i < num_verts; i++, vp++) {
|
||||
|
||||
if (vp->x < min_x->x)
|
||||
min_x = vp;
|
||||
|
||||
if (vp->x > max_x->x)
|
||||
max_x = vp;
|
||||
|
||||
if (vp->y < min_y->y)
|
||||
min_y = vp;
|
||||
|
||||
if (vp->y > max_y->y)
|
||||
max_y = vp;
|
||||
|
||||
if (vp->z < min_z->z)
|
||||
min_z = vp;
|
||||
|
||||
if (vp->z > max_z->z)
|
||||
max_z = vp;
|
||||
}
|
||||
|
||||
// Calculate initial sphere
|
||||
|
||||
dx = vm_VectorDistance(min_x, max_x);
|
||||
dy = vm_VectorDistance(min_y, max_y);
|
||||
dz = vm_VectorDistance(min_z, max_z);
|
||||
|
||||
if (dx > dy)
|
||||
if (dx > dz) {
|
||||
*center = (*min_x + *max_x) / 2;
|
||||
rad = dx / 2;
|
||||
} else {
|
||||
*center = (*min_z + *max_z) / 2;
|
||||
rad = dz / 2;
|
||||
}
|
||||
else if (dy > dz) {
|
||||
*center = (*min_y + *max_y) / 2;
|
||||
rad = dy / 2;
|
||||
} else {
|
||||
*center = (*min_z + *max_z) / 2;
|
||||
rad = dz / 2;
|
||||
}
|
||||
|
||||
// Go through all points and look for ones that don't fit
|
||||
rad2 = rad * rad;
|
||||
for (i = 0, vp = vecs; i < num_verts; i++, vp++) {
|
||||
vector delta;
|
||||
float t2;
|
||||
|
||||
delta = *vp - *center;
|
||||
t2 = delta.x * delta.x + delta.y * delta.y + delta.z * delta.z;
|
||||
|
||||
// If point outside, make the sphere bigger
|
||||
if (t2 > rad2) {
|
||||
float t;
|
||||
|
||||
t = sqrt(t2);
|
||||
rad = (rad + t) / 2;
|
||||
rad2 = rad * rad;
|
||||
*center += delta * (t - rad) / t;
|
||||
}
|
||||
}
|
||||
|
||||
// We're done
|
||||
return rad;
|
||||
}
|
@ -19,10 +19,6 @@
|
||||
#ifndef OSIRIS_VECTOR_H
|
||||
#define OSIRIS_VECTOR_H
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <ctime>
|
||||
|
||||
#include "fix.h"
|
||||
#include "vecmat_external.h"
|
||||
|
||||
@ -197,798 +193,4 @@ float vm_GetCentroidFast(vector *centroid, vector *src, int nv);
|
||||
extern matrix operator*(matrix src0, matrix src1);
|
||||
extern matrix operator*=(matrix &src0, matrix src1);
|
||||
|
||||
void vm_AverageVector(vector *a, int num) {
|
||||
// Averages a vector. ie divides each component of vector a by num
|
||||
// assert (num!=0);
|
||||
|
||||
a->x = a->x / (float)num;
|
||||
a->y = a->y / (float)num;
|
||||
a->z = a->z / (float)num;
|
||||
}
|
||||
|
||||
void vm_AddVectors(vector *result, vector *a, vector *b) {
|
||||
// Adds two vectors. Either source can equal dest
|
||||
|
||||
result->x = a->x + b->x;
|
||||
result->y = a->y + b->y;
|
||||
result->z = a->z + b->z;
|
||||
}
|
||||
|
||||
void vm_SubVectors(vector *result, const vector *a, const vector *b) {
|
||||
// Subtracts second vector from first. Either source can equal dest
|
||||
|
||||
result->x = a->x - b->x;
|
||||
result->y = a->y - b->y;
|
||||
result->z = a->z - b->z;
|
||||
}
|
||||
|
||||
float vm_VectorDistance(const vector *a, const vector *b) {
|
||||
// Given two vectors, returns the distance between them
|
||||
|
||||
vector dest;
|
||||
float dist;
|
||||
|
||||
vm_SubVectors(&dest, a, b);
|
||||
dist = vm_GetMagnitude(&dest);
|
||||
return dist;
|
||||
}
|
||||
float vm_VectorDistanceQuick(vector *a, vector *b) {
|
||||
// Given two vectors, returns the distance between them
|
||||
|
||||
vector dest;
|
||||
float dist;
|
||||
|
||||
vm_SubVectors(&dest, a, b);
|
||||
dist = vm_GetMagnitudeFast(&dest);
|
||||
return dist;
|
||||
}
|
||||
|
||||
// Calculates the perpendicular vector given three points
|
||||
// Parms: n - the computed perp vector (filled in)
|
||||
// v0,v1,v2 - three clockwise vertices
|
||||
void vm_GetPerp(vector *n, vector *a, vector *b, vector *c) {
|
||||
// Given 3 vertices, return the surface normal in n
|
||||
// IMPORTANT: B must be the 'corner' vertex
|
||||
|
||||
vector x, y;
|
||||
|
||||
vm_SubVectors(&x, b, a);
|
||||
vm_SubVectors(&y, c, b);
|
||||
|
||||
vm_CrossProduct(n, &x, &y);
|
||||
}
|
||||
|
||||
// Calculates the (normalized) surface normal give three points
|
||||
// Parms: n - the computed surface normal (filled in)
|
||||
// v0,v1,v2 - three clockwise vertices
|
||||
// Returns the magnitude of the normal before it was normalized.
|
||||
// The bigger this value, the better the normal.
|
||||
float vm_GetNormal(vector *n, vector *v0, vector *v1, vector *v2) {
|
||||
vm_GetPerp(n, v0, v1, v2);
|
||||
|
||||
return vm_VectorNormalize(n);
|
||||
}
|
||||
|
||||
// Does a simple dot product calculation
|
||||
float vm_DotProduct(vector *u, vector *v) { return (u->x * v->x) + (u->y * v->y) + (u->z * v->z); }
|
||||
|
||||
// Scales all components of vector v by value s and stores result in vector d
|
||||
// dest can equal source
|
||||
void vm_ScaleVector(vector *d, vector *v, float s) {
|
||||
d->x = (v->x * s);
|
||||
d->y = (v->y * s);
|
||||
d->z = (v->z * s);
|
||||
}
|
||||
|
||||
void vm_ScaleAddVector(vector *d, vector *p, vector *v, float s) {
|
||||
// Scales all components of vector v by value s
|
||||
// adds the result to p and stores result in vector d
|
||||
// dest can equal source
|
||||
|
||||
d->x = p->x + (v->x * s);
|
||||
d->y = p->y + (v->y * s);
|
||||
d->z = p->z + (v->z * s);
|
||||
}
|
||||
|
||||
void vm_DivVector(vector *dest, vector *src, float n) {
|
||||
// Divides a vector into n portions
|
||||
// Dest can equal src
|
||||
|
||||
// assert (n!=0);
|
||||
|
||||
dest->x = src->x / n;
|
||||
dest->y = src->y / n;
|
||||
dest->z = src->z / n;
|
||||
}
|
||||
|
||||
void vm_CrossProduct(vector *dest, vector *u, vector *v) {
|
||||
// Computes a cross product between u and v, returns the result
|
||||
// in Normal. Dest cannot equal source.
|
||||
|
||||
dest->x = (u->y * v->z) - (u->z * v->y);
|
||||
dest->y = (u->z * v->x) - (u->x * v->z);
|
||||
dest->z = (u->x * v->y) - (u->y * v->x);
|
||||
}
|
||||
|
||||
// Normalize a vector.
|
||||
// Returns: the magnitude before normalization
|
||||
float vm_VectorNormalize(vector *a) {
|
||||
float mag;
|
||||
|
||||
mag = vm_GetMagnitude(a);
|
||||
|
||||
if (mag > 0)
|
||||
*a /= mag;
|
||||
else {
|
||||
*a = Zero_vector;
|
||||
a->x = 1.0;
|
||||
mag = 0.0f;
|
||||
}
|
||||
|
||||
return mag;
|
||||
}
|
||||
|
||||
float vm_GetMagnitude(vector *a) {
|
||||
float f;
|
||||
|
||||
f = (a->x * a->x) + (a->y * a->y) + (a->z * a->z);
|
||||
|
||||
return (sqrt(f));
|
||||
}
|
||||
|
||||
void vm_ClearMatrix(matrix *dest) { memset(dest, 0, sizeof(matrix)); }
|
||||
|
||||
void vm_MakeIdentity(matrix *dest) {
|
||||
memset(dest, 0, sizeof(matrix));
|
||||
dest->rvec.x = dest->uvec.y = dest->fvec.z = 1.0;
|
||||
}
|
||||
void vm_MakeInverseMatrix(matrix *dest) {
|
||||
memset((void *)dest, 0, sizeof(matrix));
|
||||
dest->rvec.x = dest->uvec.y = dest->fvec.z = -1.0;
|
||||
}
|
||||
|
||||
void vm_TransposeMatrix(matrix *m) {
|
||||
// Transposes a matrix in place
|
||||
|
||||
float t;
|
||||
|
||||
t = m->uvec.x;
|
||||
m->uvec.x = m->rvec.y;
|
||||
m->rvec.y = t;
|
||||
t = m->fvec.x;
|
||||
m->fvec.x = m->rvec.z;
|
||||
m->rvec.z = t;
|
||||
t = m->fvec.y;
|
||||
m->fvec.y = m->uvec.z;
|
||||
m->uvec.z = t;
|
||||
}
|
||||
|
||||
void vm_MatrixMulVector(vector *result, vector *v, matrix *m) {
|
||||
// Rotates a vector thru a matrix
|
||||
|
||||
// assert(result != v);
|
||||
|
||||
result->x = *v * m->rvec;
|
||||
result->y = *v * m->uvec;
|
||||
result->z = *v * m->fvec;
|
||||
}
|
||||
|
||||
// Multiply a vector times the transpose of a matrix
|
||||
void vm_VectorMulTMatrix(vector *result, vector *v, matrix *m) {
|
||||
// assert(result != v);
|
||||
|
||||
result->x = vm_Dot3Vector(m->rvec.x, m->uvec.x, m->fvec.x, v);
|
||||
result->y = vm_Dot3Vector(m->rvec.y, m->uvec.y, m->fvec.y, v);
|
||||
result->z = vm_Dot3Vector(m->rvec.z, m->uvec.z, m->fvec.z, v);
|
||||
}
|
||||
|
||||
void vm_MatrixMul(matrix *dest, matrix *src0, matrix *src1) {
|
||||
// For multiplying two 3x3 matrices together
|
||||
|
||||
// assert((dest != src0) && (dest != src1));
|
||||
|
||||
dest->rvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->rvec);
|
||||
dest->uvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->uvec);
|
||||
dest->fvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->fvec);
|
||||
|
||||
dest->rvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->rvec);
|
||||
dest->uvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->uvec);
|
||||
dest->fvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->fvec);
|
||||
|
||||
dest->rvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->rvec);
|
||||
dest->uvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->uvec);
|
||||
dest->fvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->fvec);
|
||||
}
|
||||
|
||||
// Multiply a matrix times the transpose of a matrix
|
||||
void vm_MatrixMulTMatrix(matrix *dest, matrix *src0, matrix *src1) {
|
||||
// For multiplying two 3x3 matrices together
|
||||
|
||||
// assert((dest != src0) && (dest != src1));
|
||||
|
||||
dest->rvec.x = src0->rvec.x * src1->rvec.x + src0->uvec.x * src1->uvec.x + src0->fvec.x * src1->fvec.x;
|
||||
dest->uvec.x = src0->rvec.x * src1->rvec.y + src0->uvec.x * src1->uvec.y + src0->fvec.x * src1->fvec.y;
|
||||
dest->fvec.x = src0->rvec.x * src1->rvec.z + src0->uvec.x * src1->uvec.z + src0->fvec.x * src1->fvec.z;
|
||||
|
||||
dest->rvec.y = src0->rvec.y * src1->rvec.x + src0->uvec.y * src1->uvec.x + src0->fvec.y * src1->fvec.x;
|
||||
dest->uvec.y = src0->rvec.y * src1->rvec.y + src0->uvec.y * src1->uvec.y + src0->fvec.y * src1->fvec.y;
|
||||
dest->fvec.y = src0->rvec.y * src1->rvec.z + src0->uvec.y * src1->uvec.z + src0->fvec.y * src1->fvec.z;
|
||||
|
||||
dest->rvec.z = src0->rvec.z * src1->rvec.x + src0->uvec.z * src1->uvec.x + src0->fvec.z * src1->fvec.x;
|
||||
dest->uvec.z = src0->rvec.z * src1->rvec.y + src0->uvec.z * src1->uvec.y + src0->fvec.z * src1->fvec.y;
|
||||
dest->fvec.z = src0->rvec.z * src1->rvec.z + src0->uvec.z * src1->uvec.z + src0->fvec.z * src1->fvec.z;
|
||||
}
|
||||
|
||||
matrix operator*(matrix src0, matrix src1) {
|
||||
// For multiplying two 3x3 matrices together
|
||||
matrix dest;
|
||||
|
||||
dest.rvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.rvec);
|
||||
dest.uvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.uvec);
|
||||
dest.fvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.fvec);
|
||||
|
||||
dest.rvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.rvec);
|
||||
dest.uvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.uvec);
|
||||
dest.fvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.fvec);
|
||||
|
||||
dest.rvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.rvec);
|
||||
dest.uvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.uvec);
|
||||
dest.fvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.fvec);
|
||||
|
||||
return dest;
|
||||
}
|
||||
|
||||
matrix operator*=(matrix &src0, matrix src1) { return (src0 = src0 * src1); }
|
||||
|
||||
// Computes a normalized direction vector between two points
|
||||
// Parameters: dest - filled in with the normalized direction vector
|
||||
// start,end - the start and end points used to calculate the vector
|
||||
// Returns: the distance between the two input points
|
||||
float vm_GetNormalizedDir(vector *dest, vector *end, vector *start) {
|
||||
vm_SubVectors(dest, end, start);
|
||||
return vm_VectorNormalize(dest);
|
||||
}
|
||||
|
||||
// Returns a normalized direction vector between two points
|
||||
// Just like vm_GetNormalizedDir(), but uses sloppier magnitude, less precise
|
||||
// Parameters: dest - filled in with the normalized direction vector
|
||||
// start,end - the start and end points used to calculate the vector
|
||||
// Returns: the distance between the two input points
|
||||
float vm_GetNormalizedDirFast(vector *dest, vector *end, vector *start) {
|
||||
vm_SubVectors(dest, end, start);
|
||||
return vm_VectorNormalizeFast(dest);
|
||||
}
|
||||
|
||||
float vm_GetMagnitudeFast(vector *v) {
|
||||
float a, b, c, bc;
|
||||
|
||||
a = fabs(v->x);
|
||||
b = fabs(v->y);
|
||||
c = fabs(v->z);
|
||||
|
||||
if (a < b) {
|
||||
float t = a;
|
||||
a = b;
|
||||
b = t;
|
||||
}
|
||||
|
||||
if (b < c) {
|
||||
float t = b;
|
||||
b = c;
|
||||
c = t;
|
||||
|
||||
if (a < b) {
|
||||
float t = a;
|
||||
a = b;
|
||||
b = t;
|
||||
}
|
||||
}
|
||||
|
||||
bc = (b / 4) + (c / 8);
|
||||
|
||||
return a + bc + (bc / 2);
|
||||
}
|
||||
|
||||
// Normalize a vector using an approximation of the magnitude
|
||||
// Returns: the magnitude before normalization
|
||||
float vm_VectorNormalizeFast(vector *a) {
|
||||
float mag;
|
||||
|
||||
mag = vm_GetMagnitudeFast(a);
|
||||
|
||||
if (mag == 0.0) {
|
||||
a->x = a->y = a->z = 0.0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
a->x = (a->x / mag);
|
||||
a->y = (a->y / mag);
|
||||
a->z = (a->z / mag);
|
||||
|
||||
return mag;
|
||||
}
|
||||
|
||||
// Computes the distance from a point to a plane.
|
||||
// Parms: checkp - the point to check
|
||||
// Parms: norm - the (normalized) surface normal of the plane
|
||||
// planep - a point on the plane
|
||||
// Returns: The signed distance from the plane; negative dist is on the back of the plane
|
||||
float vm_DistToPlane(vector *checkp, vector *norm, vector *planep) {
|
||||
vector t;
|
||||
|
||||
t = *checkp - *planep;
|
||||
|
||||
return t * *norm;
|
||||
}
|
||||
|
||||
float vm_GetSlope(float x1, float y1, float x2, float y2) {
|
||||
// returns the slope of a line
|
||||
float r;
|
||||
|
||||
if (y2 - y1 == 0)
|
||||
return (0.0);
|
||||
|
||||
r = (x2 - x1) / (y2 - y1);
|
||||
return (r);
|
||||
}
|
||||
|
||||
void vm_SinCosToMatrix(matrix *m, float sinp, float cosp, float sinb, float cosb, float sinh, float cosh) {
|
||||
float sbsh, cbch, cbsh, sbch;
|
||||
|
||||
sbsh = (sinb * sinh);
|
||||
cbch = (cosb * cosh);
|
||||
cbsh = (cosb * sinh);
|
||||
sbch = (sinb * cosh);
|
||||
|
||||
m->rvec.x = cbch + (sinp * sbsh); // m1
|
||||
m->uvec.z = sbsh + (sinp * cbch); // m8
|
||||
|
||||
m->uvec.x = (sinp * cbsh) - sbch; // m2
|
||||
m->rvec.z = (sinp * sbch) - cbsh; // m7
|
||||
|
||||
m->fvec.x = (sinh * cosp); // m3
|
||||
m->rvec.y = (sinb * cosp); // m4
|
||||
m->uvec.y = (cosb * cosp); // m5
|
||||
m->fvec.z = (cosh * cosp); // m9
|
||||
|
||||
m->fvec.y = -sinp; // m6
|
||||
}
|
||||
|
||||
void vm_AnglesToMatrix(matrix *m, angle p, angle h, angle b) {
|
||||
float sinp, cosp, sinb, cosb, sinh, cosh;
|
||||
|
||||
sinp = FixSin(p);
|
||||
cosp = FixCos(p);
|
||||
sinb = FixSin(b);
|
||||
cosb = FixCos(b);
|
||||
sinh = FixSin(h);
|
||||
cosh = FixCos(h);
|
||||
|
||||
vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh);
|
||||
}
|
||||
|
||||
// Computes a matrix from a vector and and angle of rotation around that vector
|
||||
// Parameters: m - filled in with the computed matrix
|
||||
// v - the forward vector of the new matrix
|
||||
// a - the angle of rotation around the forward vector
|
||||
void vm_VectorAngleToMatrix(matrix *m, vector *v, angle a) {
|
||||
float sinb, cosb, sinp, cosp, sinh, cosh;
|
||||
|
||||
sinb = FixSin(a);
|
||||
cosb = FixCos(a);
|
||||
|
||||
sinp = -v->y;
|
||||
cosp = sqrt(1.0 - (sinp * sinp));
|
||||
|
||||
if (cosp != 0.0) {
|
||||
sinh = v->x / cosp;
|
||||
cosh = v->z / cosp;
|
||||
} else {
|
||||
sinh = 0;
|
||||
cosh = 1.0;
|
||||
}
|
||||
|
||||
vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh);
|
||||
}
|
||||
|
||||
// Ensure that a matrix is orthogonal
|
||||
void vm_Orthogonalize(matrix *m) {
|
||||
// Normalize forward vector
|
||||
if (vm_VectorNormalize(&m->fvec) == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Generate right vector from forward and up vectors
|
||||
m->rvec = m->uvec ^ m->fvec;
|
||||
|
||||
// Normaize new right vector
|
||||
if (vm_VectorNormalize(&m->rvec) == 0) {
|
||||
vm_VectorToMatrix(m, &m->fvec, NULL, NULL); // error, so generate from forward vector only
|
||||
return;
|
||||
}
|
||||
|
||||
// Recompute up vector, in case it wasn't entirely perpendiclar
|
||||
m->uvec = m->fvec ^ m->rvec;
|
||||
}
|
||||
|
||||
// do the math for vm_VectorToMatrix()
|
||||
void DoVectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) {
|
||||
vector *xvec = &m->rvec, *yvec = &m->uvec, *zvec = &m->fvec;
|
||||
|
||||
// ASSERT(fvec != NULL);
|
||||
|
||||
*zvec = *fvec;
|
||||
if (vm_VectorNormalize(zvec) == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (uvec == NULL) {
|
||||
|
||||
if (rvec == NULL) { // just forward vec
|
||||
|
||||
bad_vector2:;
|
||||
|
||||
if (zvec->x == 0 && zvec->z == 0) { // forward vec is straight up or down
|
||||
|
||||
m->rvec.x = 1.0;
|
||||
m->uvec.z = (zvec->y < 0) ? 1.0 : -1.0;
|
||||
|
||||
m->rvec.y = m->rvec.z = m->uvec.x = m->uvec.y = 0;
|
||||
} else { // not straight up or down
|
||||
|
||||
xvec->x = zvec->z;
|
||||
xvec->y = 0;
|
||||
xvec->z = -zvec->x;
|
||||
|
||||
vm_VectorNormalize(xvec);
|
||||
|
||||
*yvec = *zvec ^ *xvec;
|
||||
}
|
||||
|
||||
} else { // use right vec
|
||||
|
||||
*xvec = *rvec;
|
||||
if (vm_VectorNormalize(xvec) == 0)
|
||||
goto bad_vector2;
|
||||
|
||||
*yvec = *zvec ^ *xvec;
|
||||
|
||||
// normalize new perpendicular vector
|
||||
if (vm_VectorNormalize(yvec) == 0)
|
||||
goto bad_vector2;
|
||||
|
||||
// now recompute right vector, in case it wasn't entirely perpendiclar
|
||||
*xvec = *yvec ^ *zvec;
|
||||
}
|
||||
} else { // use up vec
|
||||
|
||||
*yvec = *uvec;
|
||||
if (vm_VectorNormalize(yvec) == 0)
|
||||
goto bad_vector2;
|
||||
|
||||
*xvec = *yvec ^ *zvec;
|
||||
|
||||
// normalize new perpendicular vector
|
||||
if (vm_VectorNormalize(xvec) == 0)
|
||||
goto bad_vector2;
|
||||
|
||||
// now recompute up vector, in case it wasn't entirely perpendiclar
|
||||
*yvec = *zvec ^ *xvec;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute a matrix from one or two vectors. At least one and at most two vectors must/can be specified.
|
||||
// Parameters: m - filled in with the orienation matrix
|
||||
// fvec,uvec,rvec - pointers to vectors that determine the matrix.
|
||||
// One or two of these must be specified, with the other(s) set to NULL.
|
||||
void vm_VectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) {
|
||||
if (!fvec) { // no forward vector. Use up and/or right vectors.
|
||||
matrix tmatrix;
|
||||
|
||||
if (uvec) { // got up vector. use up and, if specified, right vectors.
|
||||
DoVectorToMatrix(&tmatrix, uvec, NULL, rvec);
|
||||
m->fvec = -tmatrix.uvec;
|
||||
m->uvec = tmatrix.fvec;
|
||||
m->rvec = tmatrix.rvec;
|
||||
return;
|
||||
} else { // no up vector. Use right vector only.
|
||||
// ASSERT(rvec);
|
||||
DoVectorToMatrix(&tmatrix, rvec, NULL, NULL);
|
||||
m->fvec = -tmatrix.rvec;
|
||||
m->uvec = tmatrix.uvec;
|
||||
m->rvec = tmatrix.fvec;
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
// ASSERT(! (uvec && rvec)); //can only have 1 or 2 vectors specified
|
||||
DoVectorToMatrix(m, fvec, uvec, rvec);
|
||||
}
|
||||
}
|
||||
|
||||
void vm_SinCos(uint16_t a, float *s, float *c) {
|
||||
if (s)
|
||||
*s = FixSin(a);
|
||||
if (c)
|
||||
*c = FixCos(a);
|
||||
}
|
||||
|
||||
// extract angles from a matrix
|
||||
angvec *vm_ExtractAnglesFromMatrix(angvec *a, matrix *m) {
|
||||
float sinh, cosh, cosp;
|
||||
|
||||
if (m->fvec.x == 0 && m->fvec.z == 0) // zero head
|
||||
a->h = 0;
|
||||
else
|
||||
a->h = FixAtan2(m->fvec.z, m->fvec.x);
|
||||
|
||||
sinh = FixSin(a->h);
|
||||
cosh = FixCos(a->h);
|
||||
|
||||
if (fabs(sinh) > fabs(cosh)) // sine is larger, so use it
|
||||
cosp = (m->fvec.x / sinh);
|
||||
else // cosine is larger, so use it
|
||||
cosp = (m->fvec.z / cosh);
|
||||
|
||||
if (cosp == 0 && m->fvec.y == 0)
|
||||
a->p = 0;
|
||||
else
|
||||
a->p = FixAtan2(cosp, -m->fvec.y);
|
||||
|
||||
if (cosp == 0) // the cosine of pitch is zero. we're pitched straight up. say no bank
|
||||
|
||||
a->b = 0;
|
||||
|
||||
else {
|
||||
float sinb, cosb;
|
||||
|
||||
sinb = (m->rvec.y / cosp);
|
||||
cosb = (m->uvec.y / cosp);
|
||||
|
||||
if (sinb == 0 && cosb == 0)
|
||||
a->b = 0;
|
||||
else
|
||||
a->b = FixAtan2(cosb, sinb);
|
||||
}
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
// returns the value of a determinant
|
||||
float calc_det_value(matrix *det) {
|
||||
return det->rvec.x * det->uvec.y * det->fvec.z - det->rvec.x * det->uvec.z * det->fvec.y -
|
||||
det->rvec.y * det->uvec.x * det->fvec.z + det->rvec.y * det->uvec.z * det->fvec.x +
|
||||
det->rvec.z * det->uvec.x * det->fvec.y - det->rvec.z * det->uvec.y * det->fvec.x;
|
||||
}
|
||||
|
||||
// computes the delta angle between two vectors.
|
||||
// vectors need not be normalized. if they are, call vm_vec_delta_ang_norm()
|
||||
// the forward vector (third parameter) can be NULL, in which case the absolute
|
||||
// value of the angle in returned. Otherwise the angle around that vector is
|
||||
// returned.
|
||||
|
||||
angle vm_DeltaAngVec(vector *v0, vector *v1, vector *fvec) {
|
||||
vector t0, t1;
|
||||
|
||||
t0 = *v0;
|
||||
t1 = *v1;
|
||||
|
||||
vm_VectorNormalize(&t0);
|
||||
vm_VectorNormalize(&t1);
|
||||
|
||||
return vm_DeltaAngVecNorm(&t0, &t1, fvec);
|
||||
}
|
||||
|
||||
// computes the delta angle between two normalized vectors.
|
||||
angle vm_DeltaAngVecNorm(vector *v0, vector *v1, vector *fvec) {
|
||||
angle a;
|
||||
|
||||
a = FixAcos(vm_DotProduct(v0, v1));
|
||||
|
||||
if (fvec) {
|
||||
vector t;
|
||||
|
||||
vm_CrossProduct(&t, v0, v1);
|
||||
if (vm_DotProduct(&t, fvec) < 0)
|
||||
a = -a;
|
||||
}
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
// Gets the real center of a polygon
|
||||
// Returns the size of the passed in stuff
|
||||
float vm_GetCentroid(vector *centroid, vector *src, int nv) {
|
||||
// ASSERT (nv>2);
|
||||
vector normal;
|
||||
float area, total_area;
|
||||
int i;
|
||||
vector tmp_center;
|
||||
|
||||
vm_MakeZero(centroid);
|
||||
|
||||
// First figure out the total area of this polygon
|
||||
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
|
||||
total_area = (vm_GetMagnitude(&normal) / 2);
|
||||
|
||||
for (i = 2; i < nv - 1; i++) {
|
||||
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
|
||||
area = (vm_GetMagnitude(&normal) / 2);
|
||||
total_area += area;
|
||||
}
|
||||
|
||||
// Now figure out how much weight each triangle represents to the overall
|
||||
// polygon
|
||||
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
|
||||
area = (vm_GetMagnitude(&normal) / 2);
|
||||
|
||||
// Get the center of the first polygon
|
||||
vm_MakeZero(&tmp_center);
|
||||
for (i = 0; i < 3; i++) {
|
||||
tmp_center += src[i];
|
||||
}
|
||||
tmp_center /= 3;
|
||||
|
||||
*centroid += (tmp_center * (area / total_area));
|
||||
|
||||
// Now do the same for the rest
|
||||
for (i = 2; i < nv - 1; i++) {
|
||||
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
|
||||
area = (vm_GetMagnitude(&normal) / 2);
|
||||
|
||||
vm_MakeZero(&tmp_center);
|
||||
|
||||
tmp_center += src[0];
|
||||
tmp_center += src[i];
|
||||
tmp_center += src[i + 1];
|
||||
|
||||
tmp_center /= 3;
|
||||
|
||||
*centroid += (tmp_center * (area / total_area));
|
||||
}
|
||||
|
||||
return total_area;
|
||||
}
|
||||
|
||||
// Gets the real center of a polygon, but uses fast magnitude calculation
|
||||
// Returns the size of the passed in stuff
|
||||
float vm_GetCentroidFast(vector *centroid, vector *src, int nv) {
|
||||
// ASSERT (nv>2);
|
||||
vector normal;
|
||||
float area, total_area;
|
||||
int i;
|
||||
vector tmp_center;
|
||||
|
||||
vm_MakeZero(centroid);
|
||||
|
||||
// First figure out the total area of this polygon
|
||||
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
|
||||
total_area = (vm_GetMagnitudeFast(&normal) / 2);
|
||||
|
||||
for (i = 2; i < nv - 1; i++) {
|
||||
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
|
||||
area = (vm_GetMagnitudeFast(&normal) / 2);
|
||||
total_area += area;
|
||||
}
|
||||
|
||||
// Now figure out how much weight each triangle represents to the overall
|
||||
// polygon
|
||||
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
|
||||
area = (vm_GetMagnitudeFast(&normal) / 2);
|
||||
|
||||
// Get the center of the first polygon
|
||||
vm_MakeZero(&tmp_center);
|
||||
for (i = 0; i < 3; i++) {
|
||||
tmp_center += src[i];
|
||||
}
|
||||
tmp_center /= 3;
|
||||
|
||||
*centroid += (tmp_center * (area / total_area));
|
||||
|
||||
// Now do the same for the rest
|
||||
for (i = 2; i < nv - 1; i++) {
|
||||
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
|
||||
area = (vm_GetMagnitudeFast(&normal) / 2);
|
||||
|
||||
vm_MakeZero(&tmp_center);
|
||||
|
||||
tmp_center += src[0];
|
||||
tmp_center += src[i];
|
||||
tmp_center += src[i + 1];
|
||||
|
||||
tmp_center /= 3;
|
||||
|
||||
*centroid += (tmp_center * (area / total_area));
|
||||
}
|
||||
|
||||
return total_area;
|
||||
}
|
||||
|
||||
// creates a completely random, non-normalized vector with a range of values from -1023 to +1024 values)
|
||||
void vm_MakeRandomVector(vector *vec) {
|
||||
vec->x = rand() - RAND_MAX / 2;
|
||||
vec->y = rand() - RAND_MAX / 2;
|
||||
vec->z = rand() - RAND_MAX / 2;
|
||||
}
|
||||
|
||||
// Given a set of points, computes the minimum bounding sphere of those points
|
||||
float vm_ComputeBoundingSphere(vector *center, vector *vecs, int num_verts) {
|
||||
// This algorithm is from Graphics Gems I. There's a better algorithm in Graphics Gems III that
|
||||
// we should probably implement sometime.
|
||||
|
||||
vector *min_x, *max_x, *min_y, *max_y, *min_z, *max_z, *vp;
|
||||
float dx, dy, dz;
|
||||
float rad, rad2;
|
||||
int i;
|
||||
|
||||
// Initialize min, max vars
|
||||
min_x = max_x = min_y = max_y = min_z = max_z = &vecs[0];
|
||||
|
||||
// First, find the points with the min & max x,y, & z coordinates
|
||||
for (i = 0, vp = vecs; i < num_verts; i++, vp++) {
|
||||
|
||||
if (vp->x < min_x->x)
|
||||
min_x = vp;
|
||||
|
||||
if (vp->x > max_x->x)
|
||||
max_x = vp;
|
||||
|
||||
if (vp->y < min_y->y)
|
||||
min_y = vp;
|
||||
|
||||
if (vp->y > max_y->y)
|
||||
max_y = vp;
|
||||
|
||||
if (vp->z < min_z->z)
|
||||
min_z = vp;
|
||||
|
||||
if (vp->z > max_z->z)
|
||||
max_z = vp;
|
||||
}
|
||||
|
||||
// Calculate initial sphere
|
||||
|
||||
dx = vm_VectorDistance(min_x, max_x);
|
||||
dy = vm_VectorDistance(min_y, max_y);
|
||||
dz = vm_VectorDistance(min_z, max_z);
|
||||
|
||||
if (dx > dy)
|
||||
if (dx > dz) {
|
||||
*center = (*min_x + *max_x) / 2;
|
||||
rad = dx / 2;
|
||||
} else {
|
||||
*center = (*min_z + *max_z) / 2;
|
||||
rad = dz / 2;
|
||||
}
|
||||
else if (dy > dz) {
|
||||
*center = (*min_y + *max_y) / 2;
|
||||
rad = dy / 2;
|
||||
} else {
|
||||
*center = (*min_z + *max_z) / 2;
|
||||
rad = dz / 2;
|
||||
}
|
||||
|
||||
// Go through all points and look for ones that don't fit
|
||||
rad2 = rad * rad;
|
||||
for (i = 0, vp = vecs; i < num_verts; i++, vp++) {
|
||||
vector delta;
|
||||
float t2;
|
||||
|
||||
delta = *vp - *center;
|
||||
t2 = delta.x * delta.x + delta.y * delta.y + delta.z * delta.z;
|
||||
|
||||
// If point outside, make the sphere bigger
|
||||
if (t2 > rad2) {
|
||||
float t;
|
||||
|
||||
t = sqrt(t2);
|
||||
rad = (rad + t) / 2;
|
||||
rad2 = rad * rad;
|
||||
*center += delta * (t - rad) / t;
|
||||
}
|
||||
}
|
||||
|
||||
// We're done
|
||||
return rad;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user