/* * Descent 3 * Copyright (C) 2024 Parallax Software * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include "pserror.h" #include "mem.h" #include "log.h" #include "ssl_lib.h" #include "application.h" #include "sdlsound.h" #include "mixer.h" #include "ddio.h" #include "args.h" #define SOUNDLIB_SAMPLE_RATE 22050 #define SOUNDLIB_SAMPLE_SIZE 16 #define SOUNDLIB_CHANNELS 2 #define SOUNDLIB_DEFAULT_SAMPLES 1024 // =============================== #define MAX_SOUNDS_PLAYING_AT_ONCE 256 static sound_buffer_info sound_cache[MAX_SOUNDS_PLAYING_AT_ONCE]; static int sound_buffer_size = MAX_SOUNDS_PLAYING_AT_ONCE; lnxsound *ll_sound_ptr; // A peroidic mixer that uses the primary buffer as a stream buffer static void StreamAudio(void *user_ptr, Uint8 *stream, int len); lnxsound::lnxsound() : llsSystem() { ll_sound_ptr = this; sound_device = 0; in_at_exit = false; } lnxsound::~lnxsound() { in_at_exit = true; DestroySoundLib(); SetSoundCard(nullptr); } // Starts the sound library, maybe have it send back some information -- 3d support? int lnxsound::InitSoundLib(char mixer_type, oeApplication *sos, uint8_t max_sounds_played) { SDL_AudioSpec spec; // setup mixer tMixerInit mi; mi.primary_buffer = nullptr; mi.primary_frequency = SOUNDLIB_SAMPLE_RATE; mi.max_sounds_available = &sound_buffer_size; mi.sound_cache = sound_cache; mi.primary_alignment = SOUNDLIB_CHANNELS * (SOUNDLIB_SAMPLE_SIZE >> 3); mi.fp_SetError = lnxsound_SetError; mi.fp_ErrorText = lnxsound_ErrorText; mi.p_error_code = &m_lib_error_code; mi.ll_sound_ptr = ll_sound_ptr; if (!m_mixer.Initialize(&mi)) { return false; } // if int sampleCount = SOUNDLIB_DEFAULT_SAMPLES; int sampleArgIndex = FindArg("-sdlSndSize"); if (sampleArgIndex != 0) { const char *sampleCountStr = GetArg(sampleArgIndex + 1); if (sampleCountStr) { sampleCount = atoi(sampleCountStr); if (sampleCount <= 0) { sampleCount = SOUNDLIB_DEFAULT_SAMPLES; } } } spec.freq = SOUNDLIB_SAMPLE_RATE; spec.format = SOUNDLIB_SAMPLE_SIZE == 8 ? AUDIO_U8 : AUDIO_S16SYS; spec.channels = SOUNDLIB_CHANNELS; spec.samples = sampleCount; spec.callback = StreamAudio; spec.userdata = &m_mixer; sound_device = SDL_OpenAudioDevice(nullptr, 0, &spec, nullptr, 0); if (sound_device == 0) { strcpy(m_error_text, SDL_GetError()); return false; } LOG_INFO << "Sound: Hardware configured. Kicking off stream thread..."; SDL_PauseAudioDevice(sound_device, 0); m_total_sounds_played = 0; m_cur_sounds_played = 0; m_in_sound_frame = false; m_pending_actions = false; m_cache_stress_timer = 0.0f; m_timer_last_frametime = -1; m_sound_quality = SQT_HIGH; return true; } bool lnxsound::GetDeviceSettings(SDL_AudioDeviceID *device, uint32_t *freq, uint32_t *bit_depth, uint32_t *channels) const { if (sound_device == 0) return false; *device = sound_device; *freq = SOUNDLIB_SAMPLE_RATE; *bit_depth = SOUNDLIB_SAMPLE_SIZE; *channels = SOUNDLIB_CHANNELS; return true; } // Cleans up after the Sound Library void lnxsound::DestroySoundLib() { if (sound_device) { SDL_CloseAudioDevice(sound_device); sound_device = 0; } } // Locks and unlocks sounds (used when changing play_info data) bool lnxsound::LockSound(int sound_uid) { return false; } bool lnxsound::UnlockSound(int sound_uid) { return false; } bool lnxsound::SetSoundQuality(char quality) { int i; if (quality == m_sound_quality) return true; // pause any sounds that may be playing PauseSounds(); if (quality == SQT_NORMAL) { m_sound_quality = SQT_NORMAL; } else { m_sound_quality = SQT_HIGH; } for (i = 0; i < MAX_SOUNDS; i++) { if (Sounds[i].used != 0) { int j = Sounds[i].sample_index; if (SoundFiles[j].sample_8bit && m_sound_quality == SQT_HIGH) { mem_free(SoundFiles[j].sample_8bit); SoundFiles[j].sample_8bit = nullptr; CheckAndForceSoundDataAlloc(i); } if (SoundFiles[j].sample_16bit && m_sound_quality == SQT_NORMAL) { int count; ASSERT(SoundFiles[j].sample_8bit == nullptr); SoundFiles[j].sample_8bit = mem_rmalloc(SoundFiles[j].sample_length); // NOTE: Interesting note on sound conversion: 16 bit sounds are signed (0 biase). 8 bit sounds are unsigned // (+128 biase). for (count = 0; count < (int)SoundFiles[j].sample_length; count++) { SoundFiles[j].sample_8bit[count] = (uint8_t)((((int)SoundFiles[j].sample_16bit[count]) + 32767) >> 8); } mem_free(SoundFiles[j].sample_16bit); SoundFiles[j].sample_16bit = nullptr; } } } ResumeSounds(); return true; } char lnxsound::GetSoundQuality() { return m_sound_quality; } bool lnxsound::SetSoundMixer(char mixer_type) { return true; } char lnxsound::GetSoundMixer() { return SOUND_MIXER_SOFTWARE_16; } // Determines if a sound will play. Takes into account maximum allowable // sounds. // Also put prioritization code in here // ignore reserved slots #ifdef _DEBUG int16_t lnxsound::FindFreeSoundSlot(int sound_index, float volume, int priority) #else int16_t lnxsound::FindFreeSoundSlot(float volume, int priority) #endif { int current_slot; sound_buffer_info *sb; for (current_slot = 0; current_slot < MAX_SOUNDS_PLAYING_AT_ONCE; current_slot++) { sb = &sound_cache[current_slot]; if (sb->m_status == SSF_UNUSED) { return current_slot; } } // no more slots? take priority into account. // throw out lowest priority sound slot (must be lower than or equal to new sound priority) float weighted_priority = (priority * 2.0f) * volume; if (current_slot == MAX_SOUNDS_PLAYING_AT_ONCE) { int throw_out_slot = -1, equiv_priority_slot = -1; float weighted_priorityA, weighted_priorityB; for (current_slot = 0; current_slot < MAX_SOUNDS_PLAYING_AT_ONCE; current_slot++) { sb = &sound_cache[current_slot]; if (!(sb->m_status & (SSF_PLAY_LOOPING + SSF_PLAY_STREAMING))) { weighted_priorityA = sb->play_info->priority * 2.0f * sb->m_volume; if (weighted_priorityA < weighted_priority) { if (throw_out_slot == -1) { throw_out_slot = current_slot; } else { play_information *play_info2 = sound_cache[throw_out_slot].play_info; weighted_priorityB = play_info2->priority * 2.0f * sb->m_volume; if (weighted_priorityB > weighted_priorityA) { throw_out_slot = current_slot; } } } else if (equiv_priority_slot == -1 && weighted_priorityA == weighted_priority) { equiv_priority_slot = current_slot; } } } // if no slot found to stop, look for a slot with priority == new priority if (throw_out_slot == -1) { throw_out_slot = equiv_priority_slot; } if (throw_out_slot > -1) { sb = &sound_cache[throw_out_slot]; StopSound(sb->m_unique_id, SKT_HOLD_UNTIL_STOP); LOG_DEBUG.printf("DDSNDLIB: Replace sound (p:%d) with sound (p:%d) in slot %d", sb->play_info->priority, priority, throw_out_slot); return throw_out_slot; } } #ifdef _DEBUG if (sound_index > -1) { LOG_DEBUG.printf("DDSNDLIB: Sound %s with priority (%d) too low.", Sounds[sound_index].name, priority); } else { LOG_DEBUG.printf("DDSNDLIB: Sound unknown with priority (%d) too low.", priority); } #endif return -1; } // Plays a 2d sound int lnxsound::PlaySound2d(play_information *play_info, int sound_index, float f_volume, float f_pan, bool f_looped) { sound_buffer_info *sb; int16_t sound_slot; if (sound_device == 0) { return -1; } // calculate volume and pan f_volume = (f_volume < 0.0f) ? 0.0f : (f_volume > 1.0f) ? 1.0f : f_volume; play_info->left_volume = play_info->right_volume = f_volume; f_pan = (f_pan < -1.0f) ? -1.0f : (f_pan > 1.0f) ? 1.0f : f_pan; if (f_pan < 0.0) { play_info->right_volume += f_volume * f_pan; } else { play_info->left_volume -= f_volume * f_pan; } // do common processing. if (SoundFiles[Sounds[sound_index].sample_index].used == 0) { LOG_DEBUG.printf("Tried to play %d sound, it DNE.", sound_index); return -1; } #ifdef _DEBUG sound_slot = FindFreeSoundSlot(sound_index, f_volume, play_info->priority); #else sound_slot = FindFreeSoundSlot(f_volume, play_info->priority); #endif if (sound_slot < 0) { // do prioritization code here. return -1; } sb = &sound_cache[sound_slot]; m_total_sounds_played++; sb->play_info = play_info; sb->m_unique_id = MakeUniqueId(sound_slot); sb->m_buffer_type = SBT_2D; sb->m_sound_index = sound_index; sb->m_status = SSF_UNUSED; ASSERT(sb->m_unique_id != -1); // play 2d sound sb->m_status = (f_looped) ? SSF_PLAY_LOOPING : SSF_PLAY_NORMAL; return sb->m_unique_id; } // This function limits the number of sounds cached to 255(8bits) and 256 bit is for invalid channel // The purpose is to create unique signatures for each sound played (and allow for // the slot_number to be quickly determined) inline int lnxsound::MakeUniqueId(int sound_slot) const { return ((((int)m_total_sounds_played) << 8) + sound_slot); } inline int lnxsound::ValidateUniqueId(int sound_uid) { if (sound_uid == sound_cache[sound_uid & 0x00FF].m_unique_id) { return sound_uid & 0x00FF; } else { return -1; } } int lnxsound::PlayStream(play_information *play_info) { int16_t sound_slot; ASSERT(play_info != nullptr); float volume = std::max(play_info->left_volume, play_info->right_volume); if (sound_device == 0) return -1; #ifdef _DEBUG sound_slot = FindFreeSoundSlot(-1, volume, play_info->priority); #else sound_slot = FindFreeSoundSlot(volume, play_info->priority); #endif // Out of sound slots if (sound_slot < 0) { return -1; } m_total_sounds_played++; sound_cache[sound_slot].play_info = play_info; sound_cache[sound_slot].m_unique_id = MakeUniqueId(sound_slot); ASSERT(sound_cache[sound_slot].m_unique_id != -1); sound_cache[sound_slot].m_buffer_type = SBT_2D; sound_cache[sound_slot].m_status = SSF_PLAY_STREAMING; m_cur_sounds_played++; return (sound_cache[sound_slot].m_unique_id); } void lnxsound::SetListener(pos_state *cur_pos) { if (sound_device == 0) return; m_emulated_listener.orient = *cur_pos->orient; m_emulated_listener.position = *cur_pos->position; m_emulated_listener.velocity = *cur_pos->velocity; } int lnxsound::PlaySound3d(play_information *play_info, int sound_index, pos_state *cur_pos, float adjusted_volume, bool f_looped, float reverb) //, uint16_t frequency { float volume = adjusted_volume; // Adjust base volume by sent volume, let 3d stuff do the rest if (sound_device == 0) return -1; ASSERT(Sounds[sound_index].used != 0); if (Sounds[sound_index].used == 0) return -1; float dist; vector dir_to_sound = *cur_pos->position - m_emulated_listener.position; float pan; dist = vm_NormalizeVector(&dir_to_sound); if (dist < .1f) { dir_to_sound = m_emulated_listener.orient.fvec; } if (dist >= Sounds[sound_index].max_distance) { return -1; } else if (dist > Sounds[sound_index].min_distance) { volume *= (1.0f - ((dist - Sounds[sound_index].min_distance) / (Sounds[sound_index].max_distance - Sounds[sound_index].min_distance))); } pan = (dir_to_sound * m_emulated_listener.orient.rvec); if (volume < 0.0f) volume = 0.0f; else if (volume > 1.0f) volume = 1.0f; if (pan < -1.0f) pan = -1.0f; else if (pan > 1.0f) pan = 1.0f; return PlaySound2d(play_info, sound_index, volume, pan, f_looped); } void lnxsound::AdjustSound(int sound_uid, float f_volume, float f_pan, uint16_t frequency) { int current_slot; if (sound_device == 0) return; if ((current_slot = ValidateUniqueId(sound_uid)) == -1) return; if (sound_cache[current_slot].m_status == SSF_UNUSED) return; sound_buffer_info *sb = &sound_cache[current_slot]; play_information *play_info = sb->play_info; play_info->left_volume = play_info->right_volume = f_volume; if (f_pan < 0.0) play_info->right_volume += f_volume * f_pan; else play_info->left_volume -= f_volume * f_pan; } void lnxsound::AdjustSound(int sound_uid, pos_state *cur_pos, float adjusted_volume, float reverb) { if (sound_device == 0) return; int current_slot; if ((current_slot = ValidateUniqueId(sound_uid)) == -1) return; if (sound_cache[current_slot].m_status == SSF_UNUSED) return; // We need to determine the pan and volume float volume; volume = adjusted_volume; float dist; vector dir_to_sound = *cur_pos->position - m_emulated_listener.position; float pan; dist = vm_NormalizeVector(&dir_to_sound); if (dist < .1f) { dir_to_sound = m_emulated_listener.orient.fvec; } if (dist >= Sounds[sound_cache[current_slot].m_sound_index].max_distance) { volume = 0.0f; } else if (dist > Sounds[sound_cache[current_slot].m_sound_index].min_distance) { volume *= (1.0f - ((dist - Sounds[sound_cache[current_slot].m_sound_index].min_distance) / (Sounds[sound_cache[current_slot].m_sound_index].max_distance - Sounds[sound_cache[current_slot].m_sound_index].min_distance))); } pan = (dir_to_sound * m_emulated_listener.orient.rvec); if (volume < 0.0f) volume = 0.0f; else if (volume > 1.0f) volume = 1.0f; if (pan < -1.0f) pan = -1.0f; else if (pan > 1.0f) pan = 1.0f; AdjustSound(sound_cache[current_slot].m_unique_id, volume, pan, 22050); } void lnxsound::StopAllSounds() { for (auto ¤t_slot : sound_cache) { if (current_slot.m_status != SSF_UNUSED) { StopSound(current_slot.m_unique_id); } } } // Checks if a sound is playing (removes finished sound); bool lnxsound::IsSoundInstancePlaying(int sound_uid) { int current_slot; if (sound_device == 0) return false; if ((current_slot = ValidateUniqueId(sound_uid)) == -1) return false; if (sound_cache[current_slot].m_status != SSF_UNUSED) { return true; } return false; } int lnxsound::IsSoundPlaying(int sound_index) { if (sound_device == 0) return -1; for (auto ¤t_slot : sound_cache) { if ((current_slot.m_status != SSF_UNUSED) && (current_slot.m_sound_index == sound_index)) { return current_slot.m_unique_id; } } return -1; } // Stops 2d and 3d sounds void lnxsound::StopSound(int sound_uid, uint8_t f_immediately) { int current_slot; sound_buffer_info *sb; if (sound_device == 0) return; if ((current_slot = ValidateUniqueId(sound_uid)) == -1) return; sb = &sound_cache[current_slot]; if (sb->m_status == SSF_UNUSED) return; // update sound count. m_cur_sounds_played--; if (f_immediately == SKT_STOP_AFTER_LOOP) { sb->m_status &= ~SSF_PLAY_LOOPING; sb->m_status |= SSF_PLAY_NORMAL; return; } sound_cache[current_slot].m_status = SSF_UNUSED; } // Pause all sounds/resume all sounds void lnxsound::PauseSounds() { for (auto ¤t_slot : sound_cache) { sound_buffer_info *sb = ¤t_slot; if (sb->m_status != SSF_UNUSED && !(sb->m_status & SSF_PAUSED)) { sb->m_status |= SSF_PAUSED; } } } void lnxsound::ResumeSounds() { for (auto ¤t_slot : sound_cache) { sound_buffer_info *sb = ¤t_slot; if (sb->m_status != SSF_UNUSED && (sb->m_status & SSF_PAUSED)) { current_slot.m_status &= (~SSF_PAUSED); } } } void lnxsound::PauseSound(int sound_uid) { for (auto ¤t_slot : sound_cache) { sound_buffer_info *sb = ¤t_slot; if (sb->m_unique_id == sound_uid) { if (sb->m_status != SSF_UNUSED && !(sb->m_status & SSF_PAUSED)) { sb->m_status |= SSF_PAUSED; } break; } } } void lnxsound::ResumeSound(int sound_uid) { for (auto ¤t_slot : sound_cache) { if (sound_uid == current_slot.m_unique_id) { if (current_slot.m_status != SSF_UNUSED && (current_slot.m_status & SSF_PAUSED)) { current_slot.m_status &= (~SSF_PAUSED); break; } } } } bool lnxsound::CheckAndForceSoundDataAlloc(int sound_index) { int sound_file_index = Sounds[sound_index].sample_index; // ASSERT(sound_file_index >= 0 && sound_file_index < MAX_SOUND_FILES); if (sound_file_index < 0 || sound_file_index >= MAX_SOUND_FILES) { return false; } // Check if the sample data is already loaded if (SoundFiles[sound_file_index].sample_16bit != nullptr || SoundFiles[sound_file_index].sample_8bit != nullptr) return true; // If not, get the sound data int result = SoundLoadWaveFile(SoundFiles[sound_file_index].name, Sounds[sound_index].import_volume, sound_file_index, (m_sound_quality == SQT_HIGH), true); // Why would it load once (table load time) and not now? if (!result) return false; LOG_DEBUG.printf("Sound %s loaded.", SoundFiles[sound_file_index].name); return true; } // Begin sound frame void lnxsound::SoundStartFrame() { float frame_time; if (m_timer_last_frametime == -1) { frame_time = 0.0f; } else { frame_time = (timer_GetMSTime() - m_timer_last_frametime) / 1000.0f; } m_timer_last_frametime = timer_GetMSTime(); // perform necessary functions if sound events are pending for frame, this doesn't have to do anything // if the mixer doesn't require such actions. Aureal does though. if (m_pending_actions) { LOG_DEBUG << "pending actions"; } m_in_sound_frame = true; m_pending_actions = false; int counter = 0, loop_counter = 0, stream_counter = 0, buf_loop_counter = 0; #ifdef _DEBUG int n_p5 = 0, n_p4 = 0, n_p3 = 0, n_p2 = 0, n_p1 = 0, n_p0 = 0; #endif for (auto ¤t_slot : sound_cache) { sound_buffer_info *sb = ¤t_slot; if (sb->m_status != SSF_UNUSED) { counter++; if (sb->m_status & SSF_PLAY_LOOPING) { if (sb->m_status & SSF_BUFFERED_LOOP) buf_loop_counter++; loop_counter++; } if (sb->m_status & SSF_PLAY_STREAMING) stream_counter++; #ifdef _DEBUG if (sb->play_info->priority == SND_PRIORITY_CRITICAL) n_p5++; else if (sb->play_info->priority == SND_PRIORITY_HIGHEST) n_p4++; else if (sb->play_info->priority == SND_PRIORITY_HIGH) n_p3++; else if (sb->play_info->priority == SND_PRIORITY_NORMAL) n_p2++; else if (sb->play_info->priority == SND_PRIORITY_LOW) n_p1++; else if (sb->play_info->priority == SND_PRIORITY_LOWEST) n_p0++; #endif } } // update cache stress timer. if (counter < (MAX_SOUNDS_PLAYING_AT_ONCE * 3 / 4)) { m_cache_stress_timer += frame_time; } else { m_cache_stress_timer = 0.0f; } } // End sound frame void lnxsound::SoundEndFrame() { CheckForErrors(); // handles errors. m_in_sound_frame = false; } // Sound System Error Handler. void lnxsound::CheckForErrors() { // if a fatal error occurred, quit and display an error // non-fatal errors should be put inside a logfile, or just mprinted out. switch (m_lib_error_code) { case SSL_ERROR_SAMPLE_NODATA: Error("%s\nSample had no data.", m_error_text); break; case SSL_ERROR_STREAMMIXER: Error("%s\nMixer alignment check failed.", m_error_text); break; case SSL_ERROR_GENERIC: Error("%s\nGeneric error.", m_error_text); break; } // must call! llsSystem::CheckForErrors(); } // returns the error string. const char *lnxsound::GetErrorStr() const { static char buffer[] = "No Error Given"; return buffer; } bool lnxsound::SetGlobalReverbProperties(float volume, float damping, float decay) { return false; } void lnxsound::StartStreaming() {} void lnxsound::EndStreaming() {} // may be called before init (must be to be valid, the card passed here will be initialized in InitSoundLib) void lnxsound::SetSoundCard(const char *name) {} // set special parameters for the 3d environment. // of strcuture passed, you must set the appropriate 'flags' value for values you wish to modify void lnxsound::SetEnvironmentValues(const t3dEnvironmentValues *env) {} // get special parameters for the 3d environment. // of strcuture passed, you must set the appropriate 'flags' value for values you wish to modify void lnxsound::GetEnvironmentValues(t3dEnvironmentValues *env) {} // enable special parameters for the 3d environment. // of strcuture passed, you must set the appropriate 'flags' value for values you wish to modify void lnxsound::SetEnvironmentToggles(const t3dEnvironmentToggles *env) {} // get states of special parameters for the 3d environment. // of strcuture passed, you must set the appropriate 'flags' value for values you wish to modify void lnxsound::GetEnvironmentToggles(t3dEnvironmentToggles *env) {} void lnxsound_SetError(int code) { ll_sound_ptr->SetError(code); } void lnxsound_ErrorText(const char *fmt, ...) { char buffer[384]; va_list args; va_start(args, fmt); std::vsnprintf(buffer, sizeof(buffer), fmt, args); va_end(args); ll_sound_ptr->ErrorText(buffer); } // A peroidic mixer that uses the primary buffer as a stream buffer static void StreamAudio(void *user_ptr, Uint8 *stream, int len) { ((software_mixer *)user_ptr)->StreamMixer((char *)stream, len); }