/* * $Logfile: /DescentIII/Main/dmfc/encryption.cpp $ * $Revision: 1.1.1.1 $ * $Date: 2003/08/26 03:57:21 $ * $Author: kevinb $ * * header file for ICE encryption class * * $Log: encryption.cpp,v $ * Revision 1.1.1.1 2003/08/26 03:57:21 kevinb * initial 1.5 import * * * 2 7/08/99 2:37a Jeff * created encryption class based off of ICE encryption * * $NoKeywords: $ */ #include "encryption.h" class IceSubkey { public: unsigned long val[3]; }; // the S-boxes static unsigned long ice_sbox[4][1024]; static int ice_sboxes_initialised = 0; // modulo values for the S-boxes static const int ice_smod[4][4] = { {333, 313, 505, 369}, {379, 375, 319, 391}, {361, 445, 451, 397}, {397, 425, 395, 505}}; // XOR values for the S-boxes static const int ice_sxor[4][4] = { {0x83, 0x85, 0x9b, 0xcd}, {0xcc, 0xa7, 0xad, 0x41}, {0x4b, 0x2e, 0xd4, 0x33}, {0xea, 0xcb, 0x2e, 0x04}}; // Permutation values for the P-box static const unsigned long ice_pbox[32] = { 0x00000001, 0x00000080, 0x00000400, 0x00002000, 0x00080000, 0x00200000, 0x01000000, 0x40000000, 0x00000008, 0x00000020, 0x00000100, 0x00004000, 0x00010000, 0x00800000, 0x04000000, 0x20000000, 0x00000004, 0x00000010, 0x00000200, 0x00008000, 0x00020000, 0x00400000, 0x08000000, 0x10000000, 0x00000002, 0x00000040, 0x00000800, 0x00001000, 0x00040000, 0x00100000, 0x02000000, 0x80000000}; // key rotation schedule static const int ice_keyrot[16] = {0, 1, 2, 3, 2, 1, 3, 0, 1, 3, 2, 0, 3, 1, 0, 2}; // // 8-bit Galois Field multiplication of a by b, modulo m. // Just like arithmetic multiplication, except that additions and // subtractions are replaced by XOR. // static uint gf_mult(uint a, uint b, uint m) { uint res = 0; while (b) { if (b & 1) res ^= a; a <<= 1; b >>= 1; if (a >= 256) a ^= m; } return (res); } // // Galois Field exponentiation. // Raise the base to the power of 7, modulo m. // static unsigned long gf_exp7(uint b, uint m) { uint x; if (b == 0) return 0; x = gf_mult(b, b, m); x = gf_mult(b, x, m); x = gf_mult(x, x, m); return (gf_mult(b, x, m)); } // // Carry out the ICE 32-bit P-box permutation. // static unsigned long ice_perm32(unsigned long x) { unsigned long res = 0; const unsigned long *pbox = ice_pbox; while (x) { if (x & 1) res |= *pbox; pbox++; x >>= 1; } return (res); } // // Initialise the ICE S-boxes. // This only has to be done once. // static void ice_sboxes_init(void) { int i; for (i = 0; i < 1024; i++) { int col = (i >> 1) & 0xff; int row = (i & 0x1) | ((i & 0x200) >> 8); unsigned long x; x = gf_exp7(col ^ ice_sxor[0][row], ice_smod[0][row]) << 24; ice_sbox[0][i] = ice_perm32(x); x = gf_exp7(col ^ ice_sxor[1][row], ice_smod[1][row]) << 16; ice_sbox[1][i] = ice_perm32(x); x = gf_exp7(col ^ ice_sxor[2][row], ice_smod[2][row]) << 8; ice_sbox[2][i] = ice_perm32(x); x = gf_exp7(col ^ ice_sxor[3][row], ice_smod[3][row]); ice_sbox[3][i] = ice_perm32(x); } } // // Create a new ICE key. // IceKey::IceKey(int n) { if (!ice_sboxes_initialised) { ice_sboxes_init(); ice_sboxes_initialised = 1; } if (n < 1) { _size = 1; _rounds = 8; } else { _size = n; _rounds = n * 16; } _keysched = new IceSubkey[_rounds]; } // // Destroy an ICE key. // IceKey::~IceKey() { int i, j; for (i = 0; i < _rounds; i++) { for (j = 0; j < 3; j++) { _keysched[i].val[j] = 0; } } _rounds = _size = 0; delete[] _keysched; } // // The single round ICE f function. // static unsigned long ice_f(unsigned long p, const IceSubkey *sk) { unsigned long tl, tr; /* Expanded 40-bit values */ unsigned long al, ar; /* Salted expanded 40-bit values */ // Left half expansion tl = ((p >> 16) & 0x3ff) | (((p >> 14) | (p << 18)) & 0xffc00); // Right half expansion tr = (p & 0x3ff) | ((p << 2) & 0xffc00); // Perform the salt permutation al = sk->val[2] & (tl ^ tr); ar = al ^ tr; al ^= tl; al ^= sk->val[0]; // XOR with the subkey ar ^= sk->val[1]; // S-box lookup and permutation return (ice_sbox[0][al >> 10] | ice_sbox[1][al & 0x3ff] | ice_sbox[2][ar >> 10] | ice_sbox[3][ar & 0x3ff]); } // // Encrypt a block of 8 bytes of data with the given ICE key. // void IceKey::encrypt(const ubyte *ptext, ubyte *ctext) const { int i; unsigned long l, r; l = (((unsigned long)ptext[0]) << 24) | (((unsigned long)ptext[1]) << 16) | (((unsigned long)ptext[2]) << 8) | ptext[3]; r = (((unsigned long)ptext[4]) << 24) | (((unsigned long)ptext[5]) << 16) | (((unsigned long)ptext[6]) << 8) | ptext[7]; for (i = 0; i < _rounds; i += 2) { l ^= ice_f(r, &_keysched[i]); r ^= ice_f(l, &_keysched[i + 1]); } for (i = 0; i < 4; i++) { ctext[3 - i] = (ubyte)r & 0xff; ctext[7 - i] = (ubyte)l & 0xff; r >>= 8; l >>= 8; } } // // Decrypt a block of 8 bytes of data with the given ICE key. // void IceKey::decrypt(const ubyte *ctext, ubyte *ptext) const { int i; unsigned long l, r; l = (((unsigned long)ctext[0]) << 24) | (((unsigned long)ctext[1]) << 16) | (((unsigned long)ctext[2]) << 8) | ctext[3]; r = (((unsigned long)ctext[4]) << 24) | (((unsigned long)ctext[5]) << 16) | (((unsigned long)ctext[6]) << 8) | ctext[7]; for (i = _rounds - 1; i > 0; i -= 2) { l ^= ice_f(r, &_keysched[i]); r ^= ice_f(l, &_keysched[i - 1]); } for (i = 0; i < 4; i++) { ptext[3 - i] = (ubyte)r & 0xff; ptext[7 - i] = (ubyte)l & 0xff; r >>= 8; l >>= 8; } } // // Set 8 rounds [n, n+7] of the key schedule of an ICE key. // void IceKey::scheduleBuild(unsigned short *kb, int n, const int *keyrot) { int i; for (i = 0; i < 8; i++) { int j; int kr = keyrot[i]; IceSubkey *isk = &_keysched[n + i]; for (j = 0; j < 3; j++) isk->val[j] = 0; for (j = 0; j < 15; j++) { int k; unsigned long *curr_sk = &isk->val[j % 3]; for (k = 0; k < 4; k++) { ushort *curr_kb = &kb[(kr + k) & 3]; int bit = *curr_kb & 1; *curr_sk = (*curr_sk << 1) | bit; *curr_kb = (*curr_kb >> 1) | ((bit ^ 1) << 15); } } } } // // Set the key schedule of an ICE key. // void IceKey::set(const ubyte *key) { int i; if (_rounds == 8) { ushort kb[4]; for (i = 0; i < 4; i++) { kb[3 - i] = (key[i * 2] << 8) | key[i * 2 + 1]; } scheduleBuild(kb, 0, ice_keyrot); return; } for (i = 0; i < _size; i++) { int j; ushort kb[4]; for (j = 0; j < 4; j++) { kb[3 - j] = (key[i * 8 + j * 2] << 8) | key[i * 8 + j * 2 + 1]; scheduleBuild(kb, i * 8, ice_keyrot); scheduleBuild(kb, _rounds - 8 - i * 8, &ice_keyrot[8]); } } } // // Return the key size, in bytes. // int IceKey::keySize(void) const { return (_size * 8); } // // Return the block size, in bytes. // int IceKey::blockSize(void) const { return 8; }