/* * Descent 3 * Copyright (C) 2024 Parallax Software * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef OSIRIS_VECTOR_H #define OSIRIS_VECTOR_H #include #include #include "../../Main/lib/vecmat_external.h" const vector Zero_vector = {0.0f, 0.0f, 0.0f}; // Disable the "possible loss of data" warning #pragma warning(disable : 4244) // Angles are unsigned shorts typedef uint16_t angle; // The basic fixed-point type typedef int32_t fix; #define PI 3.141592654 // Constants for converted between fix and float #define FLOAT_SCALER 65536.0 #define FIX_SHIFT 16 // 1.0 in fixed-point #define F1_0 (1 << FIX_SHIFT) // Generate the data for the trig tables. Must be called before trig functions void InitMathTables(); // Returns the sine of the given angle. Linearly interpolates between two entries in a 256-entry table float FixSin(angle a); // Returns the cosine of the given angle. Linearly interpolates between two entries in a 256-entry table float FixCos(angle a); // Returns the sine of the given angle, but does no interpolation float FixSinFast(angle a); // Returns the cosine of the given angle, but does no interpolation float FixCosFast(angle a); #define Round(x) ((int)(x + 0.5)) fix FloatToFixFast(float num); // Conversion macros //??#define FloatToFix(num) Round((num) * FLOAT_SCALER) #define FloatToFix(num) ((fix)((num) * FLOAT_SCALER)) #define IntToFix(num) ((num) << FIX_SHIFT) #define ShortToFix(num) (((int32_t)(num)) << FIX_SHIFT) #define FixToFloat(num) (((float)(num)) / FLOAT_SCALER) #define FixToInt(num) ((num) >> FIX_SHIFT) #define FixToShort(num) ((int16_t)((num) >> FIX_SHIFT)) // Tables for trig functions float sincos_table[321]; // 256 entries + 64 sin-only + 1 for interpolation angle asin_table[257]; // 1 quadrants worth, +1 for interpolation angle acos_table[257]; // Generate the data for the trig tables void InitMathTables() { int i; float rad, s, c; for (i = 0; i < 321; i++) { rad = (float)((double)i / 256.0 * 2 * PI); sincos_table[i] = (float)sin(rad); } for (i = 0; i < 256; i++) { s = asin((float)i / 256.0); c = acos((float)i / 256.0); s = (s / (PI * 2)); c = (c / (PI * 2)); asin_table[i] = FloatToFix(s); acos_table[i] = FloatToFix(c); } asin_table[256] = asin_table[255]; acos_table[256] = acos_table[255]; // Initialize a random seed. srand(time(NULL)); } // Returns the sine of the given angle. Linearly interpolates between two entries in a 256-entry table float FixSin(angle a) { int i, f; float s0, s1; i = (a >> 8) & 0xff; f = a & 0xff; s0 = sincos_table[i]; s1 = sincos_table[i + 1]; return (float)(s0 + ((s1 - s0) * (double)f / 256.0)); } // Returns the cosine of the given angle. Linearly interpolates between two entries in a 256-entry table float FixCos(angle a) { int i, f; float c0, c1; i = (a >> 8) & 0xff; f = a & 0xff; c0 = sincos_table[i + 64]; c1 = sincos_table[i + 64 + 1]; return (float)(c0 + ((c1 - c0) * (double)f / 256.0)); } // Returns the sine of the given angle, but does no interpolation float FixSinFast(angle a) { int i; i = ((a + 0x80) >> 8) & 0xff; return sincos_table[i]; } // Returns the cosine of the given angle, but does no interpolation float FixCosFast(angle a) { int i; i = ((a + 0x80) >> 8) & 0xff; return sincos_table[i + 64]; } // use this instead of: // for: (int)floor(x+0.5f) use FloatRound(x) // (int)ceil(x-0.5f) use FloatRound(x) // (int)floor(x-0.5f) use FloatRound(x-1.0f) // (int)floor(x) use FloatRound(x-0.5f) // for values in the range -2048 to 2048 // Set a vector to {0,0,0} int FloatRound(float x) { float nf; nf = x + 8390656.0f; return ((*((int *)&nf)) & 0x7FFFFF) - 2048; } // A fast way to convert floats to fix fix FloatToFixFast(float x) { float nf; nf = x * 65536.0f + 8390656.0f; return ((*((int *)&nf)) & 0x7FFFFF) - 2048; } // Get rid of the "no return value" warnings in the next three functions #pragma warning(disable : 4035) // compute inverse sine angle FixAsin(float v) { fix vv; int i, f, aa; vv = FloatToFix(fabs(v)); if (vv >= F1_0) // check for out of range return 0x4000; i = (vv >> 8) & 0xff; f = vv & 0xff; aa = asin_table[i]; aa = aa + (((asin_table[i + 1] - aa) * f) >> 8); if (v < 0) aa = F1_0 - aa; return aa; } // compute inverse cosine angle FixAcos(float v) { fix vv; int i, f, aa; vv = FloatToFix(fabs(v)); if (vv >= F1_0) // check for out of range return 0; i = (vv >> 8) & 0xff; f = vv & 0xff; aa = acos_table[i]; aa = aa + (((acos_table[i + 1] - aa) * f) >> 8); if (v < 0) aa = 0x8000 - aa; return aa; } // given cos & sin of an angle, return that angle. // parms need not be normalized, that is, the ratio of the parms cos/sin must // equal the ratio of the actual cos & sin for the result angle, but the parms // need not be the actual cos & sin. // NOTE: this is different from the standard C atan2, since it is left-handed. angle FixAtan2(float cos, float sin) { float q, m; angle t; // find smaller of two q = (sin * sin) + (cos * cos); m = sqrt(q); if (m == 0) return 0; if (fabs(sin) < fabs(cos)) { // sin is smaller, use arcsin t = FixAsin(sin / m); if (cos < 0) t = 0x8000 - t; return t; } else { t = FixAcos(cos / m); if (sin < 0) t = F1_0 - t; return t; } } // Does a ceiling operation on a fixed number fix FixCeil(fix num) { int int_num; fix new_num; int_num = FixToInt(num); if (num & 0xFFFF) { new_num = IntToFix(int_num + 1); return new_num; } new_num = IntToFix(int_num); return (new_num); } // Floors a fixed number fix FixFloor(fix num) { int int_num = FixToInt(num); return (IntToFix(int_num)); } // use this instead of: // for: (int)floor(x+0.5f) use FloatRound(x) // (int)ceil(x-0.5f) use FloatRound(x) // (int)floor(x-0.5f) use FloatRound(x-1.0f) // (int)floor(x) use FloatRound(x-0.5f) // for values in the range -2048 to 2048 int FloatRound(float x); angle FixAtan2(float cos, float sin); angle FixAsin(float v); angle FixAcos(float v); // Does a ceiling operation on a fixed number fix FixCeil(fix num); // Floors a fixed number fix FixFloor(fix num); // Used for debugging. It is used in printf's so we do not have to write out the structure 3 times // to print all the coordinates. #define XYZ(v) (v)->x, (v)->y, (v)->z extern const matrix Identity_matrix; // Given a matrix, makes it an identity matrix extern void vm_MakeIdentity(matrix *); // Set a vector to {0,0,0} extern void vm_MakeZero(vector *v); // Set an angvec to {0,0,0} extern void vm_MakeZero(angvec *a); // Rotates a vector thru a matrix extern void vm_MatrixMulVector(vector *, vector *, matrix *); // Multiply a vector times the transpose of a matrix void vm_VectorMulTMatrix(vector *result, vector *v, matrix *m); // Multiplies 2 3x3 matrixes, returning the result in first argument extern void vm_MatrixMul(matrix *, matrix *, matrix *); // Multiply a matrix times the transpose of a matrix void vm_MatrixMulTMatrix(matrix *dest, matrix *src0, matrix *src1); // Computes all math look up tables, must be called before any vector stuff is used extern void vm_InitMathTables(); // Given a vector, returns the magnitude. Uses sqrt so it's slow extern float vm_GetMagnitude(vector *); // Given a vector, returns an approximation of the magnitude extern float vm_GetMagnitudeFast(vector *); // Returns the dot product of the two given vectors extern float vm_DotProduct(vector *, vector *); // Returns a perpendicular vector to the two given vectors extern void vm_CrossProduct(vector *, vector *, vector *); // Returns the difference between two vectors extern void vm_SubVectors(vector *, const vector *, const vector *); // Returns adds two vectors, returns result in first arg extern void vm_AddVectors(vector *, vector *, vector *); // Inits vector to 0,0,0 extern void vm_CenterVector(vector *); // Given a vector, divides second arg by vector components extern void vm_AverageVector(vector *, int); // Normalizes a vector // Returns the magnitude before normalization extern float vm_VectorNormalize(vector *); // Scales second arg vector by 3rd arg, placing result in first arg extern void vm_ScaleVector(vector *, vector *, float); // Scales all components of vector v by value s adds the result to p and stores result in vector d extern void vm_ScaleAddVector(vector *d, vector *p, vector *v, float s); // Divides second vector components by 3rd arg, placing result in first arg. Useful for parametric lines extern void vm_DivVector(vector *, vector *, float); // Same as VectorNormalize, but uses approximation extern float vm_VectorNormalizeFast(vector *); // Clears a matrix to zero extern void vm_ClearMatrix(matrix *); // Transposes a matrix in place extern void vm_TransposeMatrix(matrix *); // Given 3 angles (p,h,b), makes a rotation matrix out of them extern void vm_AnglesToMatrix(matrix *, angle p, angle h, angle b); // Ensure that a matrix is orthogonal void vm_Orthogonalize(matrix *m); // Compute a matrix from one or two vectors. At least one and at most two vectors must/can be specified. // Parameters: m - filled in with the orienation matrix // fvec,uvec,rvec - pointers to vectors that determine the matrix. // One or two of these must be specified, with the other(s) set to NULL. void vm_VectorToMatrix(matrix *m, vector *fvec, vector *uvec = NULL, vector *rvec = NULL); // Computes a matrix from a vector and and angle of rotation around that vector // Parameters: m - filled in with the computed matrix // v - the forward vector of the new matrix // a - the angle of rotation around the forward vector void vm_VectorAngleToMatrix(matrix *m, vector *v, angle a); // Given an angle, places sin in 2nd arg, cos in 3rd. Either can be null extern void vm_SinCos(angle, float *, float *); // Given x1,y1,x2,y2, returns the slope extern float vm_GetSlope(float, float, float, float); // Calculates the perpendicular vector given three points // Parms: n - the computed perp vector (filled in) // v0,v1,v2 - three clockwise vertices void vm_GetPerp(vector *n, vector *a, vector *b, vector *c); // Calculates the (normalized) surface normal give three points // Parms: n - the computed surface normal (filled in) // v0,v1,v2 - three clockwise vertices // Returns the magnitude of the normal before it was normalized. // The bigger this value, the better the normal. float vm_GetNormal(vector *n, vector *v0, vector *v1, vector *v2); #define vm_GetSurfaceNormal vm_GetNormal // Gets the distances (magnitude) between two vectors. Slow. extern float vm_VectorDistance(const vector *a, const vector *b); // Gets the approx distances (magnitude) between two vectors. Faster. extern float vm_VectorDistanceQuick(vector *a, vector *b); // Computes a normalized direction vector between two points // Parameters: dest - filled in with the normalized direction vector // start,end - the start and end points used to calculate the vector // Returns: the distance between the two input points float vm_GetNormalizedDir(vector *dest, vector *end, vector *start); // Returns a normalized direction vector between two points // Uses sloppier magnitude, less precise float vm_GetNormalizedDirFast(vector *dest, vector *end, vector *start); // extract angles from a matrix angvec *vm_ExtractAnglesFromMatrix(angvec *a, matrix *m); // returns the angle between two vectors and a forward vector angle vm_DeltaAngVec(vector *v0, vector *v1, vector *fvec); // returns the angle between two normalized vectors and a forward vector angle vm_DeltaAngVecNorm(vector *v0, vector *v1, vector *fvec); // Computes the distance from a point to a plane. // Parms: checkp - the point to check // Parms: norm - the (normalized) surface normal of the plane // planep - a point on the plane // Returns: The signed distance from the plane; negative dist is on the back of the plane float vm_DistToPlane(vector *checkp, vector *norm, vector *planep); // returns the value of a determinant float calc_det_value(matrix *det); void vm_MakeInverseMatrix(matrix *dest); void vm_SinCosToMatrix(matrix *m, float sinp, float cosp, float sinb, float cosb, float sinh, float cosh); // Gets the real center of a polygon float vm_GetCentroid(vector *centroid, vector *src, int nv); // retrieves a random vector in values -RAND_MAX/2 to RAND_MAX/2 void vm_MakeRandomVector(vector *vec); // Given a set of points, computes the minimum bounding sphere of those points float vm_ComputeBoundingSphere(vector *center, vector *vecs, int num_verts); // Gets the real center of a polygon, but uses fast magnitude calculation // Returns the size of the passed in stuff float vm_GetCentroidFast(vector *centroid, vector *src, int nv); // Here are the C++ operator overloads -- they do as expected extern matrix operator*(matrix src0, matrix src1); extern matrix operator*=(matrix &src0, matrix src1); void vm_AverageVector(vector *a, int num) { // Averages a vector. ie divides each component of vector a by num // assert (num!=0); a->x = a->x / (float)num; a->y = a->y / (float)num; a->z = a->z / (float)num; } void vm_AddVectors(vector *result, vector *a, vector *b) { // Adds two vectors. Either source can equal dest result->x = a->x + b->x; result->y = a->y + b->y; result->z = a->z + b->z; } void vm_SubVectors(vector *result, const vector *a, const vector *b) { // Subtracts second vector from first. Either source can equal dest result->x = a->x - b->x; result->y = a->y - b->y; result->z = a->z - b->z; } float vm_VectorDistance(const vector *a, const vector *b) { // Given two vectors, returns the distance between them vector dest; float dist; vm_SubVectors(&dest, a, b); dist = vm_GetMagnitude(&dest); return dist; } float vm_VectorDistanceQuick(vector *a, vector *b) { // Given two vectors, returns the distance between them vector dest; float dist; vm_SubVectors(&dest, a, b); dist = vm_GetMagnitudeFast(&dest); return dist; } // Calculates the perpendicular vector given three points // Parms: n - the computed perp vector (filled in) // v0,v1,v2 - three clockwise vertices void vm_GetPerp(vector *n, vector *a, vector *b, vector *c) { // Given 3 vertices, return the surface normal in n // IMPORTANT: B must be the 'corner' vertex vector x, y; vm_SubVectors(&x, b, a); vm_SubVectors(&y, c, b); vm_CrossProduct(n, &x, &y); } // Calculates the (normalized) surface normal give three points // Parms: n - the computed surface normal (filled in) // v0,v1,v2 - three clockwise vertices // Returns the magnitude of the normal before it was normalized. // The bigger this value, the better the normal. float vm_GetNormal(vector *n, vector *v0, vector *v1, vector *v2) { vm_GetPerp(n, v0, v1, v2); return vm_VectorNormalize(n); } // Does a simple dot product calculation float vm_DotProduct(vector *u, vector *v) { return (u->x * v->x) + (u->y * v->y) + (u->z * v->z); } // Scales all components of vector v by value s and stores result in vector d // dest can equal source void vm_ScaleVector(vector *d, vector *v, float s) { d->x = (v->x * s); d->y = (v->y * s); d->z = (v->z * s); } void vm_ScaleAddVector(vector *d, vector *p, vector *v, float s) { // Scales all components of vector v by value s // adds the result to p and stores result in vector d // dest can equal source d->x = p->x + (v->x * s); d->y = p->y + (v->y * s); d->z = p->z + (v->z * s); } void vm_DivVector(vector *dest, vector *src, float n) { // Divides a vector into n portions // Dest can equal src // assert (n!=0); dest->x = src->x / n; dest->y = src->y / n; dest->z = src->z / n; } void vm_CrossProduct(vector *dest, vector *u, vector *v) { // Computes a cross product between u and v, returns the result // in Normal. Dest cannot equal source. dest->x = (u->y * v->z) - (u->z * v->y); dest->y = (u->z * v->x) - (u->x * v->z); dest->z = (u->x * v->y) - (u->y * v->x); } // Normalize a vector. // Returns: the magnitude before normalization float vm_VectorNormalize(vector *a) { float mag; mag = vm_GetMagnitude(a); if (mag > 0) *a /= mag; else { *a = Zero_vector; a->x = 1.0; mag = 0.0f; } return mag; } float vm_GetMagnitude(vector *a) { float f; f = (a->x * a->x) + (a->y * a->y) + (a->z * a->z); return (sqrt(f)); } void vm_ClearMatrix(matrix *dest) { memset(dest, 0, sizeof(matrix)); } void vm_MakeIdentity(matrix *dest) { memset(dest, 0, sizeof(matrix)); dest->rvec.x = dest->uvec.y = dest->fvec.z = 1.0; } void vm_MakeInverseMatrix(matrix *dest) { memset((void *)dest, 0, sizeof(matrix)); dest->rvec.x = dest->uvec.y = dest->fvec.z = -1.0; } void vm_TransposeMatrix(matrix *m) { // Transposes a matrix in place float t; t = m->uvec.x; m->uvec.x = m->rvec.y; m->rvec.y = t; t = m->fvec.x; m->fvec.x = m->rvec.z; m->rvec.z = t; t = m->fvec.y; m->fvec.y = m->uvec.z; m->uvec.z = t; } void vm_MatrixMulVector(vector *result, vector *v, matrix *m) { // Rotates a vector thru a matrix // assert(result != v); result->x = *v * m->rvec; result->y = *v * m->uvec; result->z = *v * m->fvec; } // Multiply a vector times the transpose of a matrix void vm_VectorMulTMatrix(vector *result, vector *v, matrix *m) { // assert(result != v); result->x = vm_Dot3Vector(m->rvec.x, m->uvec.x, m->fvec.x, v); result->y = vm_Dot3Vector(m->rvec.y, m->uvec.y, m->fvec.y, v); result->z = vm_Dot3Vector(m->rvec.z, m->uvec.z, m->fvec.z, v); } void vm_MatrixMul(matrix *dest, matrix *src0, matrix *src1) { // For multiplying two 3x3 matrices together // assert((dest != src0) && (dest != src1)); dest->rvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->rvec); dest->uvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->uvec); dest->fvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->fvec); dest->rvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->rvec); dest->uvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->uvec); dest->fvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->fvec); dest->rvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->rvec); dest->uvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->uvec); dest->fvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->fvec); } // Multiply a matrix times the transpose of a matrix void vm_MatrixMulTMatrix(matrix *dest, matrix *src0, matrix *src1) { // For multiplying two 3x3 matrices together // assert((dest != src0) && (dest != src1)); dest->rvec.x = src0->rvec.x * src1->rvec.x + src0->uvec.x * src1->uvec.x + src0->fvec.x * src1->fvec.x; dest->uvec.x = src0->rvec.x * src1->rvec.y + src0->uvec.x * src1->uvec.y + src0->fvec.x * src1->fvec.y; dest->fvec.x = src0->rvec.x * src1->rvec.z + src0->uvec.x * src1->uvec.z + src0->fvec.x * src1->fvec.z; dest->rvec.y = src0->rvec.y * src1->rvec.x + src0->uvec.y * src1->uvec.x + src0->fvec.y * src1->fvec.x; dest->uvec.y = src0->rvec.y * src1->rvec.y + src0->uvec.y * src1->uvec.y + src0->fvec.y * src1->fvec.y; dest->fvec.y = src0->rvec.y * src1->rvec.z + src0->uvec.y * src1->uvec.z + src0->fvec.y * src1->fvec.z; dest->rvec.z = src0->rvec.z * src1->rvec.x + src0->uvec.z * src1->uvec.x + src0->fvec.z * src1->fvec.x; dest->uvec.z = src0->rvec.z * src1->rvec.y + src0->uvec.z * src1->uvec.y + src0->fvec.z * src1->fvec.y; dest->fvec.z = src0->rvec.z * src1->rvec.z + src0->uvec.z * src1->uvec.z + src0->fvec.z * src1->fvec.z; } matrix operator*(matrix src0, matrix src1) { // For multiplying two 3x3 matrices together matrix dest; dest.rvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.rvec); dest.uvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.uvec); dest.fvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.fvec); dest.rvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.rvec); dest.uvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.uvec); dest.fvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.fvec); dest.rvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.rvec); dest.uvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.uvec); dest.fvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.fvec); return dest; } matrix operator*=(matrix &src0, matrix src1) { return (src0 = src0 * src1); } // Computes a normalized direction vector between two points // Parameters: dest - filled in with the normalized direction vector // start,end - the start and end points used to calculate the vector // Returns: the distance between the two input points float vm_GetNormalizedDir(vector *dest, vector *end, vector *start) { vm_SubVectors(dest, end, start); return vm_VectorNormalize(dest); } // Returns a normalized direction vector between two points // Just like vm_GetNormalizedDir(), but uses sloppier magnitude, less precise // Parameters: dest - filled in with the normalized direction vector // start,end - the start and end points used to calculate the vector // Returns: the distance between the two input points float vm_GetNormalizedDirFast(vector *dest, vector *end, vector *start) { vm_SubVectors(dest, end, start); return vm_VectorNormalizeFast(dest); } float vm_GetMagnitudeFast(vector *v) { float a, b, c, bc; a = fabs(v->x); b = fabs(v->y); c = fabs(v->z); if (a < b) { float t = a; a = b; b = t; } if (b < c) { float t = b; b = c; c = t; if (a < b) { float t = a; a = b; b = t; } } bc = (b / 4) + (c / 8); return a + bc + (bc / 2); } // Normalize a vector using an approximation of the magnitude // Returns: the magnitude before normalization float vm_VectorNormalizeFast(vector *a) { float mag; mag = vm_GetMagnitudeFast(a); if (mag == 0.0) { a->x = a->y = a->z = 0.0; return 0; } a->x = (a->x / mag); a->y = (a->y / mag); a->z = (a->z / mag); return mag; } // Computes the distance from a point to a plane. // Parms: checkp - the point to check // Parms: norm - the (normalized) surface normal of the plane // planep - a point on the plane // Returns: The signed distance from the plane; negative dist is on the back of the plane float vm_DistToPlane(vector *checkp, vector *norm, vector *planep) { vector t; t = *checkp - *planep; return t * *norm; } float vm_GetSlope(float x1, float y1, float x2, float y2) { // returns the slope of a line float r; if (y2 - y1 == 0) return (0.0); r = (x2 - x1) / (y2 - y1); return (r); } void vm_SinCosToMatrix(matrix *m, float sinp, float cosp, float sinb, float cosb, float sinh, float cosh) { float sbsh, cbch, cbsh, sbch; sbsh = (sinb * sinh); cbch = (cosb * cosh); cbsh = (cosb * sinh); sbch = (sinb * cosh); m->rvec.x = cbch + (sinp * sbsh); // m1 m->uvec.z = sbsh + (sinp * cbch); // m8 m->uvec.x = (sinp * cbsh) - sbch; // m2 m->rvec.z = (sinp * sbch) - cbsh; // m7 m->fvec.x = (sinh * cosp); // m3 m->rvec.y = (sinb * cosp); // m4 m->uvec.y = (cosb * cosp); // m5 m->fvec.z = (cosh * cosp); // m9 m->fvec.y = -sinp; // m6 } void vm_AnglesToMatrix(matrix *m, angle p, angle h, angle b) { float sinp, cosp, sinb, cosb, sinh, cosh; sinp = FixSin(p); cosp = FixCos(p); sinb = FixSin(b); cosb = FixCos(b); sinh = FixSin(h); cosh = FixCos(h); vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh); } // Computes a matrix from a vector and and angle of rotation around that vector // Parameters: m - filled in with the computed matrix // v - the forward vector of the new matrix // a - the angle of rotation around the forward vector void vm_VectorAngleToMatrix(matrix *m, vector *v, angle a) { float sinb, cosb, sinp, cosp, sinh, cosh; sinb = FixSin(a); cosb = FixCos(a); sinp = -v->y; cosp = sqrt(1.0 - (sinp * sinp)); if (cosp != 0.0) { sinh = v->x / cosp; cosh = v->z / cosp; } else { sinh = 0; cosh = 1.0; } vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh); } // Ensure that a matrix is orthogonal void vm_Orthogonalize(matrix *m) { // Normalize forward vector if (vm_VectorNormalize(&m->fvec) == 0) { return; } // Generate right vector from forward and up vectors m->rvec = m->uvec ^ m->fvec; // Normaize new right vector if (vm_VectorNormalize(&m->rvec) == 0) { vm_VectorToMatrix(m, &m->fvec, NULL, NULL); // error, so generate from forward vector only return; } // Recompute up vector, in case it wasn't entirely perpendiclar m->uvec = m->fvec ^ m->rvec; } // do the math for vm_VectorToMatrix() void DoVectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) { vector *xvec = &m->rvec, *yvec = &m->uvec, *zvec = &m->fvec; // ASSERT(fvec != NULL); *zvec = *fvec; if (vm_VectorNormalize(zvec) == 0) { return; } if (uvec == NULL) { if (rvec == NULL) { // just forward vec bad_vector2:; if (zvec->x == 0 && zvec->z == 0) { // forward vec is straight up or down m->rvec.x = 1.0; m->uvec.z = (zvec->y < 0) ? 1.0 : -1.0; m->rvec.y = m->rvec.z = m->uvec.x = m->uvec.y = 0; } else { // not straight up or down xvec->x = zvec->z; xvec->y = 0; xvec->z = -zvec->x; vm_VectorNormalize(xvec); *yvec = *zvec ^ *xvec; } } else { // use right vec *xvec = *rvec; if (vm_VectorNormalize(xvec) == 0) goto bad_vector2; *yvec = *zvec ^ *xvec; // normalize new perpendicular vector if (vm_VectorNormalize(yvec) == 0) goto bad_vector2; // now recompute right vector, in case it wasn't entirely perpendiclar *xvec = *yvec ^ *zvec; } } else { // use up vec *yvec = *uvec; if (vm_VectorNormalize(yvec) == 0) goto bad_vector2; *xvec = *yvec ^ *zvec; // normalize new perpendicular vector if (vm_VectorNormalize(xvec) == 0) goto bad_vector2; // now recompute up vector, in case it wasn't entirely perpendiclar *yvec = *zvec ^ *xvec; } } // Compute a matrix from one or two vectors. At least one and at most two vectors must/can be specified. // Parameters: m - filled in with the orienation matrix // fvec,uvec,rvec - pointers to vectors that determine the matrix. // One or two of these must be specified, with the other(s) set to NULL. void vm_VectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) { if (!fvec) { // no forward vector. Use up and/or right vectors. matrix tmatrix; if (uvec) { // got up vector. use up and, if specified, right vectors. DoVectorToMatrix(&tmatrix, uvec, NULL, rvec); m->fvec = -tmatrix.uvec; m->uvec = tmatrix.fvec; m->rvec = tmatrix.rvec; return; } else { // no up vector. Use right vector only. // ASSERT(rvec); DoVectorToMatrix(&tmatrix, rvec, NULL, NULL); m->fvec = -tmatrix.rvec; m->uvec = tmatrix.uvec; m->rvec = tmatrix.fvec; return; } } else { // ASSERT(! (uvec && rvec)); //can only have 1 or 2 vectors specified DoVectorToMatrix(m, fvec, uvec, rvec); } } void vm_SinCos(uint16_t a, float *s, float *c) { if (s) *s = FixSin(a); if (c) *c = FixCos(a); } // extract angles from a matrix angvec *vm_ExtractAnglesFromMatrix(angvec *a, matrix *m) { float sinh, cosh, cosp; if (m->fvec.x == 0 && m->fvec.z == 0) // zero head a->h = 0; else a->h = FixAtan2(m->fvec.z, m->fvec.x); sinh = FixSin(a->h); cosh = FixCos(a->h); if (fabs(sinh) > fabs(cosh)) // sine is larger, so use it cosp = (m->fvec.x / sinh); else // cosine is larger, so use it cosp = (m->fvec.z / cosh); if (cosp == 0 && m->fvec.y == 0) a->p = 0; else a->p = FixAtan2(cosp, -m->fvec.y); if (cosp == 0) // the cosine of pitch is zero. we're pitched straight up. say no bank a->b = 0; else { float sinb, cosb; sinb = (m->rvec.y / cosp); cosb = (m->uvec.y / cosp); if (sinb == 0 && cosb == 0) a->b = 0; else a->b = FixAtan2(cosb, sinb); } return a; } // returns the value of a determinant float calc_det_value(matrix *det) { return det->rvec.x * det->uvec.y * det->fvec.z - det->rvec.x * det->uvec.z * det->fvec.y - det->rvec.y * det->uvec.x * det->fvec.z + det->rvec.y * det->uvec.z * det->fvec.x + det->rvec.z * det->uvec.x * det->fvec.y - det->rvec.z * det->uvec.y * det->fvec.x; } // computes the delta angle between two vectors. // vectors need not be normalized. if they are, call vm_vec_delta_ang_norm() // the forward vector (third parameter) can be NULL, in which case the absolute // value of the angle in returned. Otherwise the angle around that vector is // returned. angle vm_DeltaAngVec(vector *v0, vector *v1, vector *fvec) { vector t0, t1; t0 = *v0; t1 = *v1; vm_VectorNormalize(&t0); vm_VectorNormalize(&t1); return vm_DeltaAngVecNorm(&t0, &t1, fvec); } // computes the delta angle between two normalized vectors. angle vm_DeltaAngVecNorm(vector *v0, vector *v1, vector *fvec) { angle a; a = FixAcos(vm_DotProduct(v0, v1)); if (fvec) { vector t; vm_CrossProduct(&t, v0, v1); if (vm_DotProduct(&t, fvec) < 0) a = -a; } return a; } // Gets the real center of a polygon // Returns the size of the passed in stuff float vm_GetCentroid(vector *centroid, vector *src, int nv) { // ASSERT (nv>2); vector normal; float area, total_area; int i; vector tmp_center; vm_MakeZero(centroid); // First figure out the total area of this polygon vm_GetPerp(&normal, &src[0], &src[1], &src[2]); total_area = (vm_GetMagnitude(&normal) / 2); for (i = 2; i < nv - 1; i++) { vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]); area = (vm_GetMagnitude(&normal) / 2); total_area += area; } // Now figure out how much weight each triangle represents to the overall // polygon vm_GetPerp(&normal, &src[0], &src[1], &src[2]); area = (vm_GetMagnitude(&normal) / 2); // Get the center of the first polygon vm_MakeZero(&tmp_center); for (i = 0; i < 3; i++) { tmp_center += src[i]; } tmp_center /= 3; *centroid += (tmp_center * (area / total_area)); // Now do the same for the rest for (i = 2; i < nv - 1; i++) { vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]); area = (vm_GetMagnitude(&normal) / 2); vm_MakeZero(&tmp_center); tmp_center += src[0]; tmp_center += src[i]; tmp_center += src[i + 1]; tmp_center /= 3; *centroid += (tmp_center * (area / total_area)); } return total_area; } // Gets the real center of a polygon, but uses fast magnitude calculation // Returns the size of the passed in stuff float vm_GetCentroidFast(vector *centroid, vector *src, int nv) { // ASSERT (nv>2); vector normal; float area, total_area; int i; vector tmp_center; vm_MakeZero(centroid); // First figure out the total area of this polygon vm_GetPerp(&normal, &src[0], &src[1], &src[2]); total_area = (vm_GetMagnitudeFast(&normal) / 2); for (i = 2; i < nv - 1; i++) { vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]); area = (vm_GetMagnitudeFast(&normal) / 2); total_area += area; } // Now figure out how much weight each triangle represents to the overall // polygon vm_GetPerp(&normal, &src[0], &src[1], &src[2]); area = (vm_GetMagnitudeFast(&normal) / 2); // Get the center of the first polygon vm_MakeZero(&tmp_center); for (i = 0; i < 3; i++) { tmp_center += src[i]; } tmp_center /= 3; *centroid += (tmp_center * (area / total_area)); // Now do the same for the rest for (i = 2; i < nv - 1; i++) { vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]); area = (vm_GetMagnitudeFast(&normal) / 2); vm_MakeZero(&tmp_center); tmp_center += src[0]; tmp_center += src[i]; tmp_center += src[i + 1]; tmp_center /= 3; *centroid += (tmp_center * (area / total_area)); } return total_area; } // creates a completely random, non-normalized vector with a range of values from -1023 to +1024 values) void vm_MakeRandomVector(vector *vec) { vec->x = rand() - RAND_MAX / 2; vec->y = rand() - RAND_MAX / 2; vec->z = rand() - RAND_MAX / 2; } // Given a set of points, computes the minimum bounding sphere of those points float vm_ComputeBoundingSphere(vector *center, vector *vecs, int num_verts) { // This algorithm is from Graphics Gems I. There's a better algorithm in Graphics Gems III that // we should probably implement sometime. vector *min_x, *max_x, *min_y, *max_y, *min_z, *max_z, *vp; float dx, dy, dz; float rad, rad2; int i; // Initialize min, max vars min_x = max_x = min_y = max_y = min_z = max_z = &vecs[0]; // First, find the points with the min & max x,y, & z coordinates for (i = 0, vp = vecs; i < num_verts; i++, vp++) { if (vp->x < min_x->x) min_x = vp; if (vp->x > max_x->x) max_x = vp; if (vp->y < min_y->y) min_y = vp; if (vp->y > max_y->y) max_y = vp; if (vp->z < min_z->z) min_z = vp; if (vp->z > max_z->z) max_z = vp; } // Calculate initial sphere dx = vm_VectorDistance(min_x, max_x); dy = vm_VectorDistance(min_y, max_y); dz = vm_VectorDistance(min_z, max_z); if (dx > dy) if (dx > dz) { *center = (*min_x + *max_x) / 2; rad = dx / 2; } else { *center = (*min_z + *max_z) / 2; rad = dz / 2; } else if (dy > dz) { *center = (*min_y + *max_y) / 2; rad = dy / 2; } else { *center = (*min_z + *max_z) / 2; rad = dz / 2; } // Go through all points and look for ones that don't fit rad2 = rad * rad; for (i = 0, vp = vecs; i < num_verts; i++, vp++) { vector delta; float t2; delta = *vp - *center; t2 = delta.x * delta.x + delta.y * delta.y + delta.z * delta.z; // If point outside, make the sphere bigger if (t2 > rad2) { float t; t = sqrt(t2); rad = (rad + t) / 2; rad2 = rad * rad; *center += delta * (t - rad) / t; } } // We're done return rad; } #endif