/* * Descent 3 * Copyright (C) 2024 Parallax Software * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . --- HISTORICAL COMMENTS FOLLOW --- * $Logfile: /DescentIII/Main/vecmat/vector.cpp $ * $Revision: 26 $ * $Date: 4/19/00 5:28p $ * $Author: Matt $ * * Vector/Matrix functions * * $Log: /DescentIII/Main/vecmat/vector.cpp $ * * 26 4/19/00 5:28p Matt * From Duane for 1.4 * Mac-only optimizations * * 25 5/10/99 3:18a Matt * Fixed extract angles from matrix, which was totally bogus when the * forward vector was straight up or down. * * 24 4/21/99 11:06a Kevin * new ps_rand and ps_srand to replace rand & srand * * 23 2/19/99 4:26p Jason * more work on Katmai support * * 22 2/16/99 12:36a Kevin * Fixes for release builds of OEM V3 and KAtmai * * 21 1/11/99 4:45p Jason * added first pass at katmai support * * 20 1/01/99 4:10p Chris * Added some const parameters, improved ray cast object collide/rejection * code * * 19 6/15/98 7:00a Chris * Added vm_SinCos(). * * 18 6/03/98 6:50p Chris * Fixed some infinity bugs * * 17 6/03/98 6:42p Chris * Added multipoint collision detection an Assert on invalid (infinite * endpoint). * * 16 5/25/98 3:45p Jason * added vm_GetCentroidFast * * 15 3/12/98 7:30p Chris * Added ObjSetOrient * * 14 2/08/98 6:01p Matt * Added functions to multiply by a transposed matrix, and simplified some * other code a bit. * * 13 2/06/98 10:57a Matt * Made vm_VectorToMatrix() take any one or two vectors, & not require * forward vec. * Also, made the uvec and rvec parameters default to NULL if not * specified. * * 12 2/02/98 8:17p Chris * Added a != operator and a Zero_vector constant * * 11 1/20/98 4:04p Matt * Made vm_GetNormalizedDir() and vm_GetNormalizeDirFast() return the * distance between the two input points. * * 10 1/13/98 1:30p Jason * changed vm_GetCentroid to also return the size of the area * * 9 11/04/97 6:21p Chris * Allowed other files to use the vm_DeltaAngVecNorm function * * 8 10/25/97 7:15p Jason * implemented vm_ComputeBoundingSphere * * 7 10/14/97 4:35p Samir * Added vm_MakeRandomVector. * * 6 9/23/97 2:26p Matt * Made vm_GetNormal() return the magnitude of the normal (before it was * normalized) * * 5 8/28/97 4:56p Jason * implemented vm_GetCentroid * * 4 8/21/97 7:09p Matt * Made vm_VectorAngleToMatrix() work when forward vector was straight up * or down * * 3 8/18/97 4:45p Matt * Added vm_VectorAngleToMatrix() to vecmat library, and removed copy from * HCurves.cpp * * 2 7/17/97 3:56p Matt * Added vm_Orthogonalize() * * 25 5/20/97 5:52p Jason * tweaked a couple of things with magnitude division * * 24 4/18/97 2:14p Samir * Added vm_DeltaAngVec. * * 23 2/28/97 3:33 PM Jeremy * put pserror.h in "" instead of <> since it's one of * * 22 2/27/97 1:40p Chris * Added a function to compute the determinate -- * BTW on the last rev. I moved all inline functions * to the header. (So they will be inlined) * * 21 2/26/97 7:33p Chris * * 20 2/20/97 11:41a Chris * Added a negate unary operator for vectors * * 19 2/12/97 5:28p Jason * implemented ExtractAnglesFromMatrix function * * 18 2/11/97 6:49p Matt * Added vm_VectorToMatrix() * Made vm_NormalizeVector() return the old vector mag * Fixed bug in inline version of crossprod * * 17 2/07/97 5:38p Matt * Moved fixed-point math funcs to fix.lib * * $NoKeywords: $ */ #include #include #include #include "vecmat.h" #include "mono.h" #include "pserror.h" #include "psrand.h" const vector Zero_vector = {0.0, 0.0, 0.0}; const matrix Identity_matrix = IDENTITY_MATRIX; void vm_AverageVector(vector *a, int num) { // Averages a vector. ie divides each component of vector a by num assert(num != 0); a->x = a->x / (float)num; a->y = a->y / (float)num; a->z = a->z / (float)num; } void vm_AddVectors(vector *result, vector *a, vector *b) { // Adds two vectors. Either source can equal dest result->x = a->x + b->x; result->y = a->y + b->y; result->z = a->z + b->z; } void vm_SubVectors(vector *result, const vector *a, const vector *b) { // Subtracts second vector from first. Either source can equal dest result->x = a->x - b->x; result->y = a->y - b->y; result->z = a->z - b->z; } float vm_VectorDistance(const vector *a, const vector *b) { // Given two vectors, returns the distance between them vector dest; float dist; vm_SubVectors(&dest, a, b); dist = vm_GetMagnitude(&dest); return dist; } float vm_VectorDistanceQuick(vector *a, vector *b) { // Given two vectors, returns the distance between them vector dest; float dist; vm_SubVectors(&dest, a, b); dist = vm_GetMagnitudeFast(&dest); return dist; } // Calculates the perpendicular vector given three points // Parms: n - the computed perp vector (filled in) // v0,v1,v2 - three clockwise vertices void vm_GetPerp(vector *n, vector *a, vector *b, vector *c) { // Given 3 vertices, return the surface normal in n // IMPORTANT: B must be the 'corner' vertex vector x, y; vm_SubVectors(&x, b, a); vm_SubVectors(&y, c, b); vm_CrossProduct(n, &x, &y); } // Calculates the (normalized) surface normal give three points // Parms: n - the computed surface normal (filled in) // v0,v1,v2 - three clockwise vertices // Returns the magnitude of the normal before it was normalized. // The bigger this value, the better the normal. float vm_GetNormal(vector *n, vector *v0, vector *v1, vector *v2) { vm_GetPerp(n, v0, v1, v2); return vm_NormalizeVector(n); } // Does a simple dot product calculation float vm_DotProduct(const vector *u, const vector *v) { return (u->x * v->x) + (u->y * v->y) + (u->z * v->z); } // Scales all components of vector v by value s and stores result in vector d // dest can equal source void vm_ScaleVector(vector *d, vector *v, float s) { d->x = (v->x * s); d->y = (v->y * s); d->z = (v->z * s); } void vm_ScaleAddVector(vector *d, vector *p, vector *v, float s) { // Scales all components of vector v by value s // adds the result to p and stores result in vector d // dest can equal source d->x = p->x + (v->x * s); d->y = p->y + (v->y * s); d->z = p->z + (v->z * s); } void vm_DivVector(vector *dest, vector *src, float n) { // Divides a vector into n portions // Dest can equal src assert(n != 0); dest->x = src->x / n; dest->y = src->y / n; dest->z = src->z / n; } void vm_CrossProduct(vector *dest, vector *u, vector *v) { // Computes a cross product between u and v, returns the result // in Normal. Dest cannot equal source. dest->x = (u->y * v->z) - (u->z * v->y); dest->y = (u->z * v->x) - (u->x * v->z); dest->z = (u->x * v->y) - (u->y * v->x); } // Normalize a vector. // Returns: the magnitude before normalization float vm_NormalizeVector(vector *a) { float mag; mag = vm_GetMagnitude(a); if (mag > 0) *a /= mag; else { *a = Zero_vector; a->x = 1.0; mag = 0.0f; } return mag; } float vm_GetMagnitude(vector *a) { float f; f = (a->x * a->x) + (a->y * a->y) + (a->z * a->z); return (sqrt(f)); } void vm_ClearMatrix(matrix *dest) { memset(dest, 0, sizeof(matrix)); } void vm_MakeIdentity(matrix *dest) { memset(dest, 0, sizeof(matrix)); dest->rvec.x = dest->uvec.y = dest->fvec.z = 1.0; } void vm_MakeInverseMatrix(matrix *dest) { memset((void *)dest, 0, sizeof(matrix)); dest->rvec.x = dest->uvec.y = dest->fvec.z = -1.0; } void vm_TransposeMatrix(matrix *m) { // Transposes a matrix in place float t; t = m->uvec.x; m->uvec.x = m->rvec.y; m->rvec.y = t; t = m->fvec.x; m->fvec.x = m->rvec.z; m->rvec.z = t; t = m->fvec.y; m->fvec.y = m->uvec.z; m->uvec.z = t; } void vm_MatrixMulVector(vector *result, vector *v, matrix *m) { // Rotates a vector thru a matrix assert(result != v); result->x = *v * m->rvec; result->y = *v * m->uvec; result->z = *v * m->fvec; } // Multiply a vector times the transpose of a matrix void vm_VectorMulTMatrix(vector *result, vector *v, matrix *m) { assert(result != v); result->x = vm_Dot3Vector(m->rvec.x, m->uvec.x, m->fvec.x, v); result->y = vm_Dot3Vector(m->rvec.y, m->uvec.y, m->fvec.y, v); result->z = vm_Dot3Vector(m->rvec.z, m->uvec.z, m->fvec.z, v); } void vm_MatrixMul(matrix *dest, matrix *src0, matrix *src1) { // For multiplying two 3x3 matrices together assert((dest != src0) && (dest != src1)); dest->rvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->rvec); dest->uvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->uvec); dest->fvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->fvec); dest->rvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->rvec); dest->uvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->uvec); dest->fvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->fvec); dest->rvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->rvec); dest->uvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->uvec); dest->fvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->fvec); } // Multiply a matrix times the transpose of a matrix void vm_MatrixMulTMatrix(matrix *dest, matrix *src0, matrix *src1) { // For multiplying two 3x3 matrices together assert((dest != src0) && (dest != src1)); dest->rvec.x = src0->rvec.x * src1->rvec.x + src0->uvec.x * src1->uvec.x + src0->fvec.x * src1->fvec.x; dest->uvec.x = src0->rvec.x * src1->rvec.y + src0->uvec.x * src1->uvec.y + src0->fvec.x * src1->fvec.y; dest->fvec.x = src0->rvec.x * src1->rvec.z + src0->uvec.x * src1->uvec.z + src0->fvec.x * src1->fvec.z; dest->rvec.y = src0->rvec.y * src1->rvec.x + src0->uvec.y * src1->uvec.x + src0->fvec.y * src1->fvec.x; dest->uvec.y = src0->rvec.y * src1->rvec.y + src0->uvec.y * src1->uvec.y + src0->fvec.y * src1->fvec.y; dest->fvec.y = src0->rvec.y * src1->rvec.z + src0->uvec.y * src1->uvec.z + src0->fvec.y * src1->fvec.z; dest->rvec.z = src0->rvec.z * src1->rvec.x + src0->uvec.z * src1->uvec.x + src0->fvec.z * src1->fvec.x; dest->uvec.z = src0->rvec.z * src1->rvec.y + src0->uvec.z * src1->uvec.y + src0->fvec.z * src1->fvec.y; dest->fvec.z = src0->rvec.z * src1->rvec.z + src0->uvec.z * src1->uvec.z + src0->fvec.z * src1->fvec.z; } matrix operator*(matrix src0, matrix src1) { // For multiplying two 3x3 matrices together matrix dest; dest.rvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.rvec); dest.uvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.uvec); dest.fvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.fvec); dest.rvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.rvec); dest.uvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.uvec); dest.fvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.fvec); dest.rvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.rvec); dest.uvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.uvec); dest.fvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.fvec); return dest; } matrix operator*=(matrix &src0, matrix src1) { return (src0 = src0 * src1); } // Computes a normalized direction vector between two points // Parameters: dest - filled in with the normalized direction vector // start,end - the start and end points used to calculate the vector // Returns: the distance between the two input points float vm_GetNormalizedDir(vector *dest, vector *end, vector *start) { vm_SubVectors(dest, end, start); return vm_NormalizeVector(dest); } // Returns a normalized direction vector between two points // Just like vm_GetNormalizedDir(), but uses sloppier magnitude, less precise // Parameters: dest - filled in with the normalized direction vector // start,end - the start and end points used to calculate the vector // Returns: the distance between the two input points float vm_GetNormalizedDirFast(vector *dest, vector *end, vector *start) { vm_SubVectors(dest, end, start); return vm_NormalizeVectorFast(dest); } float vm_GetMagnitudeFast(vector *v) { float a, b, c, bc; a = fabs(v->x); b = fabs(v->y); c = fabs(v->z); if (a < b) { float t = a; a = b; b = t; } if (b < c) { float t = b; b = c; c = t; if (a < b) { float t = a; a = b; b = t; } } bc = (b / 4) + (c / 8); return a + bc + (bc / 2); } // Normalize a vector using an approximation of the magnitude // Returns: the magnitude before normalization float vm_NormalizeVectorFast(vector *a) { float mag; mag = vm_GetMagnitudeFast(a); if (mag == 0.0) { a->x = a->y = a->z = 0.0; return 0; } a->x = (a->x / mag); a->y = (a->y / mag); a->z = (a->z / mag); return mag; } // Computes the distance from a point to a plane. // Parms: checkp - the point to check // Parms: norm - the (normalized) surface normal of the plane // planep - a point on the plane // Returns: The signed distance from the plane; negative dist is on the back of the plane float vm_DistToPlane(vector *checkp, vector *norm, vector *planep) { vector t; t = *checkp - *planep; return t * *norm; } float vm_GetSlope(float x1, float y1, float x2, float y2) { // returns the slope of a line float r; if (y2 - y1 == 0) return (0.0); r = (x2 - x1) / (y2 - y1); return (r); } void vm_SinCosToMatrix(matrix *m, float sinp, float cosp, float sinb, float cosb, float sinh, float cosh) { float sbsh, cbch, cbsh, sbch; sbsh = (sinb * sinh); cbch = (cosb * cosh); cbsh = (cosb * sinh); sbch = (sinb * cosh); m->rvec.x = cbch + (sinp * sbsh); // m1 m->uvec.z = sbsh + (sinp * cbch); // m8 m->uvec.x = (sinp * cbsh) - sbch; // m2 m->rvec.z = (sinp * sbch) - cbsh; // m7 m->fvec.x = (sinh * cosp); // m3 m->rvec.y = (sinb * cosp); // m4 m->uvec.y = (cosb * cosp); // m5 m->fvec.z = (cosh * cosp); // m9 m->fvec.y = -sinp; // m6 } void vm_AnglesToMatrix(matrix *m, angle p, angle h, angle b) { float sinp, cosp, sinb, cosb, sinh, cosh; sinp = FixSin(p); cosp = FixCos(p); sinb = FixSin(b); cosb = FixCos(b); sinh = FixSin(h); cosh = FixCos(h); vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh); } // Computes a matrix from a vector and and angle of rotation around that vector // Parameters: m - filled in with the computed matrix // v - the forward vector of the new matrix // a - the angle of rotation around the forward vector void vm_VectorAngleToMatrix(matrix *m, vector *v, angle a) { float sinb, cosb, sinp, cosp, sinh, cosh; sinb = FixSin(a); cosb = FixCos(a); sinp = -v->y; cosp = sqrt(1.0 - (sinp * sinp)); if (cosp != 0.0) { sinh = v->x / cosp; cosh = v->z / cosp; } else { sinh = 0; cosh = 1.0; } vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh); } // Ensure that a matrix is orthogonal void vm_Orthogonalize(matrix *m) { // Normalize forward vector if (vm_NormalizeVector(&m->fvec) == 0) { Int3(); // forward vec should not be zero-length return; } // Generate right vector from forward and up vectors m->rvec = m->uvec ^ m->fvec; // Normaize new right vector if (vm_NormalizeVector(&m->rvec) == 0) { vm_VectorToMatrix(m, &m->fvec, NULL, NULL); // error, so generate from forward vector only return; } // Recompute up vector, in case it wasn't entirely perpendiclar m->uvec = m->fvec ^ m->rvec; } // do the math for vm_VectorToMatrix() void DoVectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) { vector *xvec = &m->rvec, *yvec = &m->uvec, *zvec = &m->fvec; ASSERT(fvec != NULL); *zvec = *fvec; if (vm_NormalizeVector(zvec) == 0) { Int3(); // forward vec should not be zero-length return; } if (uvec == NULL) { if (rvec == NULL) { // just forward vec bad_vector2:; if (zvec->x == 0 && zvec->z == 0) { // forward vec is straight up or down m->rvec.x = 1.0; m->uvec.z = (zvec->y < 0) ? 1.0 : -1.0; m->rvec.y = m->rvec.z = m->uvec.x = m->uvec.y = 0; } else { // not straight up or down xvec->x = zvec->z; xvec->y = 0; xvec->z = -zvec->x; vm_NormalizeVector(xvec); *yvec = *zvec ^ *xvec; } } else { // use right vec *xvec = *rvec; if (vm_NormalizeVector(xvec) == 0) goto bad_vector2; *yvec = *zvec ^ *xvec; // normalize new perpendicular vector if (vm_NormalizeVector(yvec) == 0) goto bad_vector2; // now recompute right vector, in case it wasn't entirely perpendiclar *xvec = *yvec ^ *zvec; } } else { // use up vec *yvec = *uvec; if (vm_NormalizeVector(yvec) == 0) goto bad_vector2; *xvec = *yvec ^ *zvec; // normalize new perpendicular vector if (vm_NormalizeVector(xvec) == 0) goto bad_vector2; // now recompute up vector, in case it wasn't entirely perpendiclar *yvec = *zvec ^ *xvec; } } // Compute a matrix from one or two vectors. At least one and at most two vectors must/can be specified. // Parameters: m - filled in with the orienation matrix // fvec,uvec,rvec - pointers to vectors that determine the matrix. // One or two of these must be specified, with the other(s) set to NULL. void vm_VectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) { if (!fvec) { // no forward vector. Use up and/or right vectors. matrix tmatrix; if (uvec) { // got up vector. use up and, if specified, right vectors. DoVectorToMatrix(&tmatrix, uvec, NULL, rvec); m->fvec = -tmatrix.uvec; m->uvec = tmatrix.fvec; m->rvec = tmatrix.rvec; return; } else { // no up vector. Use right vector only. ASSERT(rvec); DoVectorToMatrix(&tmatrix, rvec, NULL, NULL); m->fvec = -tmatrix.rvec; m->uvec = tmatrix.uvec; m->rvec = tmatrix.fvec; return; } } else { ASSERT(!(uvec && rvec)); // can only have 1 or 2 vectors specified DoVectorToMatrix(m, fvec, uvec, rvec); } } void vm_SinCos(uint16_t a, float *s, float *c) { if (s) *s = FixSin(a); if (c) *c = FixCos(a); } #define EPSILON 0.00001 #define IS_ZERO(x) (fabs(x) < EPSILON) // extract angles from a matrix angvec *vm_ExtractAnglesFromMatrix(angvec *a, matrix *m) { float sinh, cosh, cosp, sinb, cosb; // Deal with straight up or straight down if (IS_ZERO(m->fvec.x) && IS_ZERO(m->fvec.z)) { a->p = (m->fvec.y > 0) ? 0xc000 : 0x4000; a->b = 0.0; a->h = FixAtan2(m->rvec.x, -m->rvec.z); return a; } a->h = FixAtan2(m->fvec.z, m->fvec.x); sinh = FixSin(a->h); cosh = FixCos(a->h); if (fabs(sinh) > fabs(cosh)) // sine is larger, so use it cosp = (m->fvec.x / sinh); else // cosine is larger, so use it cosp = (m->fvec.z / cosh); a->p = FixAtan2(cosp, -m->fvec.y); sinb = (m->rvec.y / cosp); cosb = (m->uvec.y / cosp); a->b = FixAtan2(cosb, sinb); return a; } // returns the value of a determinant float calc_det_value(matrix *det) { return det->rvec.x * det->uvec.y * det->fvec.z - det->rvec.x * det->uvec.z * det->fvec.y - det->rvec.y * det->uvec.x * det->fvec.z + det->rvec.y * det->uvec.z * det->fvec.x + det->rvec.z * det->uvec.x * det->fvec.y - det->rvec.z * det->uvec.y * det->fvec.x; } // computes the delta angle between two vectors. // vectors need not be normalized. if they are, call vm_vec_delta_ang_norm() // the forward vector (third parameter) can be NULL, in which case the absolute // value of the angle in returned. Otherwise the angle around that vector is // returned. angle vm_DeltaAngVec(vector *v0, vector *v1, vector *fvec) { vector t0, t1; t0 = *v0; t1 = *v1; vm_NormalizeVector(&t0); vm_NormalizeVector(&t1); return vm_DeltaAngVecNorm(&t0, &t1, fvec); } // computes the delta angle between two normalized vectors. angle vm_DeltaAngVecNorm(vector *v0, vector *v1, vector *fvec) { angle a; a = FixAcos(vm_DotProduct(v0, v1)); if (fvec) { vector t; vm_CrossProduct(&t, v0, v1); if (vm_DotProduct(&t, fvec) < 0) a = -a; } return a; } // Gets the real center of a polygon // Returns the size of the passed in stuff float vm_GetCentroid(vector *centroid, vector *src, int nv) { ASSERT(nv > 2); vector normal; float area, total_area; int i; vector tmp_center; vm_MakeZero(centroid); // First figure out the total area of this polygon vm_GetPerp(&normal, &src[0], &src[1], &src[2]); total_area = (vm_GetMagnitude(&normal) / 2); for (i = 2; i < nv - 1; i++) { vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]); area = (vm_GetMagnitude(&normal) / 2); total_area += area; } // Now figure out how much weight each triangle represents to the overall // polygon vm_GetPerp(&normal, &src[0], &src[1], &src[2]); area = (vm_GetMagnitude(&normal) / 2); // Get the center of the first polygon vm_MakeZero(&tmp_center); for (i = 0; i < 3; i++) { tmp_center += src[i]; } tmp_center /= 3; *centroid += (tmp_center * (area / total_area)); // Now do the same for the rest for (i = 2; i < nv - 1; i++) { vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]); area = (vm_GetMagnitude(&normal) / 2); vm_MakeZero(&tmp_center); tmp_center += src[0]; tmp_center += src[i]; tmp_center += src[i + 1]; tmp_center /= 3; *centroid += (tmp_center * (area / total_area)); } return total_area; } // Gets the real center of a polygon, but uses fast magnitude calculation // Returns the size of the passed in stuff float vm_GetCentroidFast(vector *centroid, vector *src, int nv) { ASSERT(nv > 2); vector normal; float area, total_area; int i; vector tmp_center; vm_MakeZero(centroid); // First figure out the total area of this polygon vm_GetPerp(&normal, &src[0], &src[1], &src[2]); total_area = (vm_GetMagnitudeFast(&normal) / 2); for (i = 2; i < nv - 1; i++) { vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]); area = (vm_GetMagnitudeFast(&normal) / 2); total_area += area; } // Now figure out how much weight each triangle represents to the overall // polygon vm_GetPerp(&normal, &src[0], &src[1], &src[2]); area = (vm_GetMagnitudeFast(&normal) / 2); // Get the center of the first polygon vm_MakeZero(&tmp_center); for (i = 0; i < 3; i++) { tmp_center += src[i]; } tmp_center /= 3; *centroid += (tmp_center * (area / total_area)); // Now do the same for the rest for (i = 2; i < nv - 1; i++) { vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]); area = (vm_GetMagnitudeFast(&normal) / 2); vm_MakeZero(&tmp_center); tmp_center += src[0]; tmp_center += src[i]; tmp_center += src[i + 1]; tmp_center /= 3; *centroid += (tmp_center * (area / total_area)); } return total_area; } // creates a completely random, non-normalized vector with a range of values from -1023 to +1024 values) void vm_MakeRandomVector(vector *vec) { vec->x = ps_rand() - D3_RAND_MAX / 2; vec->y = ps_rand() - D3_RAND_MAX / 2; vec->z = ps_rand() - D3_RAND_MAX / 2; } // Given a set of points, computes the minimum bounding sphere of those points float vm_ComputeBoundingSphere(vector *center, vector *vecs, int num_verts) { // This algorithm is from Graphics Gems I. There's a better algorithm in Graphics Gems III that // we should probably implement sometime. vector *min_x, *max_x, *min_y, *max_y, *min_z, *max_z, *vp; float dx, dy, dz; float rad, rad2; int i; // Initialize min, max vars min_x = max_x = min_y = max_y = min_z = max_z = &vecs[0]; // First, find the points with the min & max x,y, & z coordinates for (i = 0, vp = vecs; i < num_verts; i++, vp++) { if (vp->x < min_x->x) min_x = vp; if (vp->x > max_x->x) max_x = vp; if (vp->y < min_y->y) min_y = vp; if (vp->y > max_y->y) max_y = vp; if (vp->z < min_z->z) min_z = vp; if (vp->z > max_z->z) max_z = vp; } // Calculate initial sphere dx = vm_VectorDistance(min_x, max_x); dy = vm_VectorDistance(min_y, max_y); dz = vm_VectorDistance(min_z, max_z); if (dx > dy) if (dx > dz) { *center = (*min_x + *max_x) / 2; rad = dx / 2; } else { *center = (*min_z + *max_z) / 2; rad = dz / 2; } else if (dy > dz) { *center = (*min_y + *max_y) / 2; rad = dy / 2; } else { *center = (*min_z + *max_z) / 2; rad = dz / 2; } // Go through all points and look for ones that don't fit rad2 = rad * rad; for (i = 0, vp = vecs; i < num_verts; i++, vp++) { vector delta; float t2; delta = *vp - *center; t2 = delta.x * delta.x + delta.y * delta.y + delta.z * delta.z; // If point outside, make the sphere bigger if (t2 > rad2) { float t; t = sqrt(t2); rad = (rad + t) / 2; rad2 = rad * rad; *center += delta * (t - rad) / t; } } // We're done return rad; }