Descent3/physics/physics.cpp
2024-09-10 03:00:25 +03:00

2593 lines
89 KiB
C++

/*
* Descent 3
* Copyright (C) 2024 Parallax Software
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cmath>
#include <cstdlib>
#include <limits>
#include "attach.h"
#include "collide.h"
#include "D3ForceFeedback.h"
#include "demofile.h"
#include "findintersection.h"
#include "fireball.h"
#include "game.h"
#include "log.h"
#include "multi.h"
#include "object.h"
#include "physics.h"
#include "player.h"
#include "polymodel.h"
#include "terrain.h"
#include "vecmat.h"
#include "viseffect.h"
#include "weapon.h"
// Global variables for physics system
uint8_t Default_player_terrain_leveling = 0;
uint8_t Default_player_room_leveling = 0;
// Maximum iterations thru the simulation loop NOTE: It is assumed that the player loops >= non-player loops
#define MAX_PLAYER_SIM_LOOPS 9
#define MAX_NON_PLAYER_SIM_LOOPS 5
#define CEILING_POWERUP_DELTA 30.0f
#define WIGGLE_FALLOFF_TIME 2.0
int Physics_normal_counter;
int Physics_normal_looping_counter;
int Physics_walking_counter;
int Physics_walking_looping_counter;
int Physics_vis_counter;
#ifdef _DEBUG
// This will allow us to debug physics in a better way.
struct sim_loop_info {
vector start_pos;
physics_info phys_info; // At beginnning of loop
fvi_info hit_info; // Hit information returned by FVI
};
sim_loop_info sim_loop_record[MAX_PLAYER_SIM_LOOPS];
#endif
#ifdef _DEBUG
int Physics_player_verbose = 0;
#endif
#define PHYSICS_GROUND_TOLERANCE 0.0001f
#define DAMP_ANG 1.0f // chrishack -- this is probably too tight and should be an int not a float
#define MAX_OBJECT_VEL 100000.0f
int Physics_cheat_flag = 0;
extern char BounceCheat;
int PhysicsLinkList[MAX_OBJECTS];
int Physics_NumLinked = 0;
// Current strength of gravity
float Gravity_strength = -32.2f; // Meters/second^2
void DoPhysLinkedFrame(object *obj) {
object *parent = ObjGet(obj->mtype.obj_link_info.parent_handle);
matrix new_orient;
vector new_pos;
if (parent && parent->type != OBJ_GHOST && parent->type != OBJ_DUMMY) {
poly_model *pm;
vector pnt;
vector fvec;
vector uvec;
matrix m;
int mn; // submodel number
float normalized_time[MAX_SUBOBJECTS];
pm = &Poly_models[parent->rtype.pobj_info.model_num];
ASSERT(pm->used);
SetNormalizedTimeObj(parent, normalized_time);
SetModelAnglesAndPos(pm, normalized_time);
pnt = obj->mtype.obj_link_info.pos;
fvec = obj->mtype.obj_link_info.fvec;
uvec = obj->mtype.obj_link_info.uvec;
mn = obj->mtype.obj_link_info.sobj_index;
if (mn < 0 || mn >= pm->n_models) {
LOG_WARNING << "Caught physics link bug!";
SetObjectDeadFlag(obj);
return;
}
// Instance up the tree for this gun
while (mn != -1) {
vector tpnt;
vm_AnglesToMatrix(&m, pm->submodel[mn].angs.p, pm->submodel[mn].angs.h, pm->submodel[mn].angs.b);
vm_TransposeMatrix(&m);
tpnt = pnt * m;
fvec = fvec * m;
uvec = uvec * m;
pnt = tpnt + pm->submodel[mn].offset + pm->submodel[mn].mod_pos;
mn = pm->submodel[mn].parent;
}
// now instance for the entire object
m = parent->orient;
vm_TransposeMatrix(&m);
new_pos = pnt * m;
fvec = fvec * m;
uvec = uvec * m;
vm_VectorToMatrix(&new_orient, &fvec, &uvec, NULL);
new_pos += parent->pos;
ObjSetPos(obj, &new_pos, parent->roomnum, &new_orient, false);
} else {
SetObjectDeadFlag(obj);
}
}
bool PhysCalcGround(vector *ground_point, vector *ground_normal, object *obj, int ground_num) {
poly_model *pm;
vector pnt;
vector normal;
matrix m;
int mn; // submodel number
float normalized_time[MAX_SUBOBJECTS];
bool f_good_gp = true;
if (obj->render_type != RT_POLYOBJ && obj->type != OBJ_PLAYER) {
// mprintf(0,"Object type %d is not a polyobj!\n",obj->type);
if (ground_point)
*ground_point = obj->pos;
if (ground_normal)
*ground_normal = obj->orient.fvec;
return false;
}
pm = &Poly_models[obj->rtype.pobj_info.model_num];
if (pm->n_ground == 0) {
LOG_WARNING.printf("Object %d with no weapons is firing.", ground_num);
if (ground_point)
*ground_point = obj->pos;
if (ground_normal)
*ground_normal = obj->orient.fvec;
return false;
}
SetNormalizedTimeObj(obj, normalized_time);
SetModelAnglesAndPos(pm, normalized_time);
if (ground_num < 0 || ground_num >= pm->n_ground) {
LOG_WARNING.printf("Bashing ground num %d to 0.", ground_num);
ground_num = 0;
f_good_gp = false;
}
pnt = pm->ground_slots[ground_num].pnt;
normal = pm->ground_slots[ground_num].norm;
mn = pm->ground_slots[ground_num].parent;
// Instance up the tree for this ground
while (mn != -1) {
vector tpnt;
vm_AnglesToMatrix(&m, pm->submodel[mn].angs.p, pm->submodel[mn].angs.h, pm->submodel[mn].angs.b);
vm_TransposeMatrix(&m);
tpnt = pnt * m;
normal = normal * m;
pnt = tpnt + pm->submodel[mn].offset + pm->submodel[mn].mod_pos;
mn = pm->submodel[mn].parent;
}
m = obj->orient;
vm_TransposeMatrix(&m);
if (ground_point)
*ground_point = pnt * m;
if (ground_normal)
*ground_normal = normal * m;
if (ground_point)
*ground_point += obj->pos;
return f_good_gp;
}
// Applies rotational thrust over at delta time
void PhysicsApplyConstRotForce(object &objp, const vector &rotforce, vector &rotvel, float deltaTime) {
const double drag = objp.mtype.phys_info.rotdrag;
const double mass = objp.mtype.phys_info.mass;
if (mass < std::numeric_limits<double>::epsilon() || drag < std::numeric_limits<double>::epsilon()) {
// Invalid mass/drag
rotvel += rotforce * deltaTime;
return;
}
// Standard angular motion with a linear air drag (drag is proportional to angular velocity)
const double oneOverDrag = 1.0 / drag;
const double rotForceOverDrag[3] = {double(rotforce.x) * oneOverDrag, double(rotforce.y) * oneOverDrag,
double(rotforce.z) * oneOverDrag};
const double dragOverMass = drag / mass;
const double expDoMDt = exp(-dragOverMass * double(deltaTime));
double newRotVel[3];
newRotVel[0] = (double(rotvel.x) - rotForceOverDrag[0]) * expDoMDt + rotForceOverDrag[0];
newRotVel[1] = (double(rotvel.y) - rotForceOverDrag[1]) * expDoMDt + rotForceOverDrag[1];
newRotVel[2] = (double(rotvel.z) - rotForceOverDrag[2]) * expDoMDt + rotForceOverDrag[2];
// set the new rotational velocity
rotvel.x = static_cast<float>(newRotVel[0]);
rotvel.y = static_cast<float>(newRotVel[1]);
rotvel.z = static_cast<float>(newRotVel[2]);
}
// Applies a linear force over time. --Like gravity or thrust
void PhysicsApplyConstantForce(const object &objp, vector &newPos, vector &newVel, vector &movementVec,
const vector &force, float deltaTime) {
const vector &pos = objp.pos;
const vector &vel = objp.mtype.phys_info.velocity;
const double drag = static_cast<double>(objp.mtype.phys_info.drag);
const double mass = static_cast<double>(objp.mtype.phys_info.mass);
if (mass < std::numeric_limits<double>::epsilon() || drag < std::numeric_limits<double>::epsilon()) {
// No Mass/Drag
movementVec = (vel * deltaTime) + (force * (0.5f * deltaTime * deltaTime));
newPos = pos + movementVec;
newVel = vel + force * deltaTime;
return;
}
// Standard motion with a linear air drag (drag is proportional to velocity)
const double dt = static_cast<double>(deltaTime);
const double oneOverDrag = 1.0 / drag;
const double massOverDrag = mass / drag;
const double forceOverDrag[3] = {force.x * oneOverDrag, force.y * oneOverDrag, force.z * oneOverDrag};
const double objVel[3] = {static_cast<double>(vel.x), static_cast<double>(vel.y), static_cast<double>(vel.z)};
const double expDoMDt = exp((-1.0 / massOverDrag) * dt);
newPos.x = static_cast<float>(static_cast<double>(pos.x) + forceOverDrag[0] * dt +
massOverDrag * (objVel[0] - forceOverDrag[0]) * (1.0 - expDoMDt));
newPos.y = static_cast<float>(static_cast<double>(pos.y) + forceOverDrag[1] * dt +
massOverDrag * (objVel[1] - forceOverDrag[1]) * (1.0 - expDoMDt));
newPos.z = static_cast<float>(static_cast<double>(pos.z) + forceOverDrag[2] * dt +
massOverDrag * (objVel[2] - forceOverDrag[2]) * (1.0 - expDoMDt));
movementVec = newPos - pos;
newVel.x = static_cast<float>((objVel[0] - forceOverDrag[0]) * expDoMDt + forceOverDrag[0]);
newVel.y = static_cast<float>((objVel[1] - forceOverDrag[1]) * expDoMDt + forceOverDrag[1]);
newVel.z = static_cast<float>((objVel[2] - forceOverDrag[2]) * expDoMDt + forceOverDrag[2]);
}
// Banks an object as it turns (we counteract this and then reapply it when we
// actually do the turn -- cool)
void set_object_turnroll(object *obj, vector *rotvel, angle *turnroll) {
float desired_bank;
angle desired_bank_angle;
desired_bank = -(rotvel->y) * obj->mtype.phys_info.turnroll_ratio;
// If desired bank > 32000, we will rotate the ship in weird ways. Should limit turn-roll to 32000 if this
// ever occurs. BTW This is where the limiter should be placed.
if (fabs(desired_bank) > 32000.0) {
if (desired_bank < 0.0)
desired_bank = -32000.0f;
else
desired_bank = 32000.0f;
}
if (desired_bank > -1.0) // accounts for -.9999 this is rounded to 0 in a float to int conversion
desired_bank_angle = desired_bank;
else
desired_bank_angle = 65535 + desired_bank;
if (*turnroll != desired_bank_angle) {
int delta_ang;
int max_roll;
max_roll = obj->mtype.phys_info.max_turnroll_rate * Frametime;
if (*turnroll > 32000)
delta_ang = desired_bank - (*turnroll - 65535);
else
delta_ang = desired_bank - *turnroll;
if (labs(delta_ang) > max_roll)
if (delta_ang > 0)
*turnroll += max_roll;
else
*turnroll -= max_roll;
else
*turnroll = desired_bank_angle;
} else
*turnroll = desired_bank_angle;
}
// Maximum number of objects that we already hit.
#define MAX_IGNORE_OBJS 100
// When leveling non-player objects - how many angles per sec. do they correct with.
#define MAX_LEVEL_ANGLES_PER_SEC 30000.0f
// Base scaler for pitch scaling of autoleveling
#define MAX_AUTOLEVEL_TILT_ANGLE 11000
// Multiplier for newbie autoleveling scaling of tilt angle
#define NEWBIE_AUTOLEVEL_TILT_ANGLE_SCALAR 1.25f
// How long a newbie sits there before the pitch leveling kicks in
#define NEWBIE_PITCH_LEVEL_TIME 1.5f
#define BANK_AUTOLEVEL_SPEED_SCALAR 2.0
// Rotational simulator the updates orient, rotvel, and turnroll
// (using these original values + frametime + rotthrust)
bool PhysicsDoSimRot(object *obj, float frame_time, matrix *orient, vector *rotthrust, vector *rotvel,
angle *turnroll) {
angvec tangles;
matrix rotmat;
physics_info *pi;
bool f_leveling = false;
float max_tilt_angle = 0;
bool f_newbie_leveling = false;
if (frame_time <= 0.0)
return false; // chrishack
pi = &obj->mtype.phys_info;
if (obj == Player_object && obj->control_type != CT_AI) {
max_tilt_angle = MAX_AUTOLEVEL_TILT_ANGLE;
if (OBJECT_OUTSIDE(obj)) {
if (Default_player_terrain_leveling) {
f_leveling = true;
if (Default_player_terrain_leveling > 1) {
max_tilt_angle *= NEWBIE_AUTOLEVEL_TILT_ANGLE_SCALAR;
f_newbie_leveling = true;
}
}
} else {
if (Default_player_room_leveling) {
f_leveling = true;
if (Default_player_room_leveling > 1) {
max_tilt_angle *= NEWBIE_AUTOLEVEL_TILT_ANGLE_SCALAR;
f_newbie_leveling = true;
}
}
}
} else {
if (pi->flags & PF_LEVELING)
f_leveling = true;
}
// Fixed rate rotaters
if (obj->mtype.phys_info.flags & PF_FIXED_ROT_VELOCITY) {
tangles.p = (int16_t)(rotvel->x * frame_time);
tangles.h = (int16_t)(rotvel->y * frame_time);
tangles.b = (int16_t)(rotvel->z * frame_time);
vm_AnglesToMatrix(&rotmat, tangles.p, tangles.h, tangles.b);
*orient = *orient * rotmat; // ObjSetOrient below
vm_Orthogonalize(orient); // Rest done after call
return true;
}
// now rotate object
// unrotate object for bank caused by turn
if (*turnroll != 0) {
tangles.p = tangles.h = 0;
tangles.b = -(*turnroll);
vm_AnglesToMatrix(&rotmat, tangles.p, tangles.h, tangles.b);
// Apply rotation matrix to the orientation matrix
*orient = *orient * rotmat; // ObjSetOrient is below
}
// Auto-leveling
if ((f_leveling) && (obj->type != OBJ_PLAYER)) {
if (fabs(rotthrust->z) < 100.0f) {
if ((fabs(rotvel->z) < 1500.0f) /*&& (pi->turnroll <= 10 || pi->turnroll >= 65535 - 10)*/) {
angvec ang;
vector fvec;
int bound;
// f_leveling = true;
// pi->turnroll = 0;
// extract angles from a matrix
vm_ExtractAnglesFromMatrix(&ang, orient);
if ((pi->flags & PF_TURNROLL) && *turnroll) {
bound = *turnroll;
if (bound > 32768) {
bound = 65535 - bound;
}
} else {
bound = 10;
}
if (ang.b > bound && ang.b < 65535 - bound) // About 1 degree
{
float scale;
// Scale on pitch
if (ang.p < 32768) {
scale = abs(16834 - (int)ang.p) / 16384.0f;
} else {
scale = abs(49152 - (int)ang.p) / 16384.0f;
}
// mprintf(0, "scale %f, ", scale);
if (ang.b < 32768) {
float al_rate = scale * MAX_LEVEL_ANGLES_PER_SEC * (1.0f - (abs(16834 - (int)ang.b) / 16384.0f));
if (al_rate < scale * 5000.0f) {
al_rate = scale * 5000.0f;
}
al_rate *= frame_time;
if (al_rate > ang.b)
al_rate = ang.b;
// mprintf(0, "L al_rate %f\n", al_rate);
ang.b -= al_rate;
} else {
float al_rate = scale * MAX_LEVEL_ANGLES_PER_SEC * (1.0f - (abs(16384 - ((int)ang.b - 32768)) / 16384.0f));
if (al_rate < scale * 5000.0f) {
al_rate = scale * 5000.0f;
}
al_rate *= frame_time;
if (al_rate > 65535 - ang.b)
al_rate = 65535 - ang.b;
// mprintf(0, "G al_rate %f\n", al_rate);
ang.b += al_rate;
}
fvec = orient->fvec;
vm_AnglesToMatrix(orient, ang.p, ang.h, ang.b);
}
}
}
} else if ((f_leveling) && (obj->type == OBJ_PLAYER)) {
bool f_pitch_leveled = false;
bool f_player_fired_recently = false;
int i;
for (i = 0; i < 21; i++) {
if (obj->dynamic_wb[i].last_fire_time + NEWBIE_PITCH_LEVEL_TIME > Gametime) {
f_player_fired_recently = true;
f_newbie_leveling = false;
break;
}
}
if (!f_player_fired_recently && f_newbie_leveling &&
(Players[obj->id].last_thrust_time + NEWBIE_PITCH_LEVEL_TIME < Gametime)) {
if (1) {
angvec ang;
int bound;
// f_leveling = true;
// pi->turnroll = 0;
// extract angles from a matrix
vm_ExtractAnglesFromMatrix(&ang, orient);
bound = 750;
// About 1 degree -- front or back
if ((ang.p > bound) && (ang.p < 65535 - bound) && // Forward
abs(ang.p - 32768) > bound) // Backward
{
float scale;
f_pitch_leveled = true;
if (obj->orient.uvec.y < 0.0f) {
ang.p += 16384;
}
scale = 1.05f - fabs(obj->orient.uvec.y);
// scale *= scale;
if (scale > 1.0)
scale = 1.0;
if (ang.p < 16834) {
rotthrust->x -= scale * obj->mtype.phys_info.full_rotthrust;
} else if (ang.p < 32768) {
rotthrust->x += scale * obj->mtype.phys_info.full_rotthrust;
} else if (ang.p < 49152) {
rotthrust->x -= scale * obj->mtype.phys_info.full_rotthrust;
} else {
rotthrust->x += scale * obj->mtype.phys_info.full_rotthrust;
}
}
}
}
if (!f_pitch_leveled && fabs(rotthrust->z) < 100.0f) {
angvec ang;
int bound;
// extract angles from a matrix
vm_ExtractAnglesFromMatrix(&ang, orient);
if ((ang.p < 32768 && (abs((int)ang.p - (int)16834) > max_tilt_angle)) ||
(ang.p >= 32768 && (abs((int)ang.p - (int)49152) > max_tilt_angle))) {
if ((pi->flags & PF_TURNROLL) && *turnroll) {
bound = *turnroll;
if (bound > 32768) {
bound = 65535 - bound;
}
} else {
bound = 10;
}
if (ang.b > bound && ang.b < 65535 - bound) // About 1 degree
{
float scale;
// Scale on pitch
if (ang.p < 32768) {
scale = (abs(16834 - (int)ang.p) - max_tilt_angle) / (16384.0f - max_tilt_angle);
} else {
scale = (abs(49152 - (int)ang.p) - max_tilt_angle) / (16384.0f - max_tilt_angle);
}
if (ang.b < 32768) {
float temp_scale;
if (ang.b > 28672) {
temp_scale = (1.04f - ((28672 - 16834) / 16384.0f));
} else {
temp_scale = (1.04f - (abs(16834 - (int)ang.b) / 16384.0f));
}
temp_scale *= temp_scale;
scale *= temp_scale;
if (f_player_fired_recently)
scale *= .25f;
rotthrust->z -= scale * BANK_AUTOLEVEL_SPEED_SCALAR * obj->mtype.phys_info.full_rotthrust;
} else {
float temp_scale;
if (ang.b < 36864) {
temp_scale = (1.04f - ((49152 - 36864) / 16384.0f));
} else {
temp_scale = (1.04f - (abs(49152 - (int)ang.b) / 16384.0f));
}
temp_scale *= temp_scale;
scale *= temp_scale;
if (f_player_fired_recently)
scale *= .25f;
rotthrust->z += scale * BANK_AUTOLEVEL_SPEED_SCALAR * obj->mtype.phys_info.full_rotthrust;
}
}
}
}
}
if (pi->rotdrag > 0.0f) {
if (!(pi->flags & PF_USES_THRUST)) {
*rotthrust = Zero_vector;
}
PhysicsApplyConstRotForce(*obj, *rotthrust, *rotvel, frame_time);
}
// Apply rotation to the "un-rollbanked" object
tangles.p = (int16_t)(rotvel->x * frame_time); // Casting to int16_t is required for aarch64 to avoid FCVTZU
// instruction which strips the negative sign
tangles.h = (int16_t)(rotvel->y * frame_time);
tangles.b = (int16_t)(rotvel->z * frame_time);
vm_AnglesToMatrix(&rotmat, tangles.p, tangles.h, tangles.b);
*orient = *orient * rotmat; // ObjSetOrient is below
// Determine the new turnroll from this amount of turning
if (pi->flags & PF_TURNROLL) {
set_object_turnroll(obj, rotvel, turnroll);
}
// re-rotate object for bank caused by turn
if (*turnroll != 0) {
tangles.p = tangles.h = 0;
tangles.b = *turnroll;
vm_AnglesToMatrix(&rotmat, tangles.p, tangles.h, tangles.b);
*orient = *orient * rotmat; // ObjSetOrient is below
}
// Make sure the new orientation is valid
vm_Orthogonalize(orient);
return true;
}
void PhysicsDoSimLinear(const object &obj, const vector &pos, const vector &force, vector &velocity,
vector &movementVec, vector &movementPos, float simTime, int count) {
// Determine velocity
if (obj.mtype.phys_info.flags & PF_FIXED_VELOCITY) {
movementVec = velocity * simTime;
movementPos = pos + movementVec;
return;
}
vector forceToUse = force;
if (!ROOMNUM_OUTSIDE(obj.roomnum) && !(obj.mtype.phys_info.flags & PF_LOCK_MASK) &&
Rooms[obj.roomnum].wind != Zero_vector && count == 0 && obj.mtype.phys_info.drag > 0.0f &&
!(obj.type == OBJ_POWERUP && Level_powerups_ignore_wind)) {
// Factor in outside wind
const vector &wind = Rooms[obj.roomnum].wind;
vector deltaForce = wind * obj.mtype.phys_info.drag * 16.0f;
forceToUse += deltaForce;
}
PhysicsApplyConstantForce(obj, movementPos, velocity, movementVec, forceToUse, simTime);
#ifdef _DEBUG
if (Physics_player_verbose && obj.type == OBJ_PLAYER) {
LOG_DEBUG.printf("Player Velocity = %f(%f)", vm_GetMagnitude(&velocity), vm_GetMagnitude(&movementVec) / simTime);
}
#endif
}
// -----------------------------------------------------------------------------------------------------------
// Simulate a physics object for this frame
void do_physics_sim(object *obj) {
// Since we might not call FVI, set this here
Fvi_num_recorded_faces = 0;
int n_ignore_objs = 0; // The number of ignored objects
int ignore_obj_list[MAX_IGNORE_OBJS + 1]; // List of ignored objects
int fate; // Collision type for response code
vector movement_vec; // Movement in this frame
vector movement_pos; // End point of the movement
int count = 0; // Simulation loop counter
int sim_loop_limit = (obj->type == OBJ_PLAYER) ? MAX_PLAYER_SIM_LOOPS : MAX_NON_PLAYER_SIM_LOOPS;
int objnum = OBJNUM(obj); // Simulated object's index
fvi_info hit_info; // Hit information
fvi_query fq; // Movement query
float sim_time_remaining = Frametime; // Amount of simulation time remaining (current iteration)
float old_sim_time_remaining = Frametime; // Amount of simulation time remaining (previous iteration)
vector init_pos = obj->pos; // Initial position
int init_room = obj->roomnum; // Initial room
vector start_pos; // Values at the start of current simulation loop
vector start_vel;
matrix start_orient;
vector start_rotvel;
angle start_turnroll;
int start_room;
float moved_time; // How long objected moved before hit something
physics_info *pi = &obj->mtype.phys_info; // Simulated object's physics information
int bounced = 0; // Did the object bounce?
vector total_force; // Constant force acting on an object
bool f_continue_sim; // Should we run another simulation loop
bool f_start_fvi_record = true; // Records the rooms that are passed thru
bool f_turn_gravity_on = false;
// Assert conditions
ASSERT(obj->type != OBJ_NONE);
ASSERT(obj->movement_type == MT_PHYSICS);
ASSERT(!(obj->mtype.phys_info.flags & PF_USES_THRUST) || obj->mtype.phys_info.drag != 0.0);
ASSERT(std::isfinite(obj->mtype.phys_info.velocity.x)); // Caller wants to go to infinity! -- Not FVI's fault.
ASSERT(std::isfinite(obj->mtype.phys_info.velocity.y)); // Caller wants to go to infinity! -- Not FVI's fault.
ASSERT(std::isfinite(obj->mtype.phys_info.velocity.z)); // Caller wants to go to infinity! -- Not FVI's fault.
#ifdef _DEBUG
if (!Game_do_flying_sim) {
return;
}
#endif
// Make powerups above the ceiling fall with gravity
if (obj->type == OBJ_POWERUP && ROOMNUM_OUTSIDE(obj->roomnum) &&
obj->pos.y > (CEILING_HEIGHT - obj->size - CEILING_POWERUP_DELTA) && !(obj->mtype.phys_info.flags & PF_GRAVITY)) {
obj->mtype.phys_info.flags |= PF_GRAVITY;
obj->flags |= OF_TEMP_GRAVITY;
} else if (obj->flags & OF_TEMP_GRAVITY) {
obj->mtype.phys_info.flags &= ~PF_GRAVITY;
}
// Instant bail cases
if ((obj->flags & (OF_DEAD | OF_ATTACHED)) || (Frametime <= 0.0) || (obj->type == OBJ_DUMMY)) {
return;
}
if (obj->type == OBJ_PLAYER &&
(obj->mtype.phys_info.thrust != Zero_vector || obj->mtype.phys_info.rotthrust != Zero_vector)) {
Players[obj->id].last_thrust_time = Gametime;
}
// mprintf(0, "%d Over terrain = %d\n", obj - Objects, obj->flags & OF_OVER_TERRAIN);
// If the object wiggles
if ((obj->mtype.phys_info.flags & PF_WIGGLE) && (Demo_flags != DF_PLAYBACK)) {
float swiggle;
vector w_pos;
if (vm_GetMagnitude(&obj->mtype.phys_info.thrust) < .1) {
obj->mtype.phys_info.last_still_time -= Frametime / WIGGLE_FALLOFF_TIME;
} else {
obj->mtype.phys_info.last_still_time += Frametime / WIGGLE_FALLOFF_TIME;
}
if (obj->mtype.phys_info.last_still_time < 0.0)
obj->mtype.phys_info.last_still_time = 0.0;
else if (obj->mtype.phys_info.last_still_time > 1.0)
obj->mtype.phys_info.last_still_time = 1.0;
// Ship always keeps 10% of its wiggle
// if(obj->mtype.phys_info.last_still_time < 1.0)
{
float scaler = 1.0f - obj->mtype.phys_info.last_still_time;
if (scaler < .1f)
scaler = .1f;
swiggle = obj->mtype.phys_info.wiggle_amplitude * (scaler) *
(FixSin((angle)((int)(Gametime * obj->mtype.phys_info.wiggles_per_sec * 65535) % 65535)) -
FixSin((angle)((int)((Gametime - Frametime) * obj->mtype.phys_info.wiggles_per_sec * 65535) % 65535)));
w_pos = obj->pos + obj->orient.uvec * (swiggle);
fq.p0 = &obj->pos;
fq.startroom = obj->roomnum;
fq.p1 = &w_pos;
fq.rad = obj->size;
fq.thisobjnum = objnum;
fq.ignore_obj_list = NULL;
fq.flags = FQ_CHECK_OBJS | FQ_RECORD | FQ_IGNORE_POWERUPS;
fq.flags |= FQ_NEW_RECORD_LIST;
fq.flags |= FQ_CHECK_CEILING;
// Need for weapons to go thru transparent areas of a texture
if (obj->type == OBJ_WEAPON)
fq.flags |= FQ_TRANSPOINT;
if (obj->flags & OF_NO_OBJECT_COLLISIONS)
fq.flags &= ~FQ_CHECK_OBJS;
fate = fvi_FindIntersection(&fq, &hit_info);
// Only wiggle on a non-hit case
if (fate == HIT_NONE) {
ASSERT(hit_info.hit_room != -1);
f_start_fvi_record = false;
// update object's position and segment number
ObjSetPos(obj, &hit_info.hit_pnt, hit_info.hit_room, NULL, false);
}
}
}
// If the object is effected by gravity (normal, lighter than air, and anti-gravity)
if (obj->mtype.phys_info.flags & PF_GRAVITY) {
total_force.x = total_force.z = 0.0;
total_force.y = Gravity_strength * obj->mtype.phys_info.mass;
} else if (obj->mtype.phys_info.flags & PF_REVERSE_GRAVITY) {
total_force.x = total_force.z = 0.0;
total_force.y = -Gravity_strength * obj->mtype.phys_info.mass;
} else {
total_force.x = total_force.y = total_force.z = 0.0;
}
obj->flags &= (~OF_STOPPED_THIS_FRAME);
// Do rotation velocity/accel stuff
bool f_rotated = false;
if (!(fabs(pi->velocity.x) > .000001 || fabs(pi->velocity.y) > .000001 || fabs(pi->velocity.z) > .000001 ||
fabs(pi->thrust.x) > .000001 || fabs(pi->thrust.y) > .000001 || fabs(pi->thrust.z) > .000001 ||
fabs(pi->rotvel.x) > .000001 || fabs(pi->rotvel.y) > .000001 || fabs(pi->rotvel.z) > .000001 ||
fabs(pi->rotthrust.x) > .000001 || fabs(pi->rotthrust.y) > .000001 || fabs(pi->rotthrust.z) > .000001 ||
(obj->mtype.phys_info.flags & PF_GRAVITY) ||
((!ROOMNUM_OUTSIDE(obj->roomnum)) && Rooms[obj->roomnum].wind != Zero_vector) ||
(obj->mtype.phys_info.flags & PF_WIGGLE) ||
((obj->ai_info != NULL) && ((obj->ai_info->flags & AIF_REPORT_NEW_ORIENT) != 0)))) {
if ((obj->flags & OF_MOVED_THIS_FRAME)) {
obj->flags &= (~OF_MOVED_THIS_FRAME);
obj->flags |= OF_STOPPED_THIS_FRAME;
}
return;
}
if (obj->ai_info)
obj->ai_info->flags &= ~AIF_REPORT_NEW_ORIENT;
obj->flags |= OF_MOVED_THIS_FRAME;
// This assumes that the thrust does not change within a frame. If it does, account for it
// there... like missiles bouncing off a wall and changing heading. --chrishack
if (obj->mtype.phys_info.drag != 0.0) {
if (obj->mtype.phys_info.flags & PF_USES_THRUST) {
total_force += obj->mtype.phys_info.thrust;
}
}
// mprintf(0, "PHYSICS: Current obj: %d, %9.2fx %9.2fy %9.2fz\n", OBJNUM(obj), XYZ(&obj->pos));
// mprintf(2,1,0,"x %9.2f\ny %9.2f\nz %9.2f", XYZ(&obj->mtype.phys_info.velocity));
// mprintf(0, "PHYSICS: Current velocity (%f, %f, %f)\n", XYZ(&obj->mtype.phys_info.velocity));
Physics_normal_counter++;
// Simulate movement until we are done (i.e. Frametime has passed or object is done moving)
do {
// Values at start of sim loop
start_pos = obj->pos;
start_vel = obj->mtype.phys_info.velocity;
start_orient = obj->orient;
start_rotvel = obj->mtype.phys_info.rotvel;
start_turnroll = obj->mtype.phys_info.turnroll;
start_room = obj->roomnum;
matrix end_orient = start_orient;
vector end_rotvel = start_rotvel;
angle end_turnroll = start_turnroll;
vector end_vel = start_vel;
#ifdef _DEBUG
// This records the sim.
sim_loop_record[count].phys_info = obj->mtype.phys_info;
#endif
// Initailly assume that this is the last sim cycle
f_continue_sim = false;
// Determines forces
if (count > 0) {
// If the object is effected by gravity (normal, lighter than air, and anti-gravity)
if (obj->mtype.phys_info.flags & PF_GRAVITY) {
total_force.x = total_force.z = 0.0;
total_force.y = Gravity_strength * obj->mtype.phys_info.mass;
} else if (obj->mtype.phys_info.flags & PF_REVERSE_GRAVITY) {
total_force.x = total_force.z = 0.0;
total_force.y = -Gravity_strength * obj->mtype.phys_info.mass;
} else if (!(obj->mtype.phys_info.flags & PF_BOUNCE)) {
// Player ship
} else {
total_force.x = total_force.y = total_force.z = 0.0;
}
}
// Compute rotational information
// Chrishack -- replace OBJ_CLUTTER with a BBOX_HIT_TYPE
bool f_set_orient;
if ((f_rotated == false && count == 0) || obj->type == OBJ_CLUTTER) {
f_rotated = true;
f_set_orient = true;
PhysicsDoSimRot(obj, sim_time_remaining, &end_orient, &obj->mtype.phys_info.rotthrust, &end_rotvel,
&end_turnroll);
ObjSetOrient(obj, &end_orient);
} else {
f_set_orient = false;
}
// Updates the thrust vector to the orientation for homing weapons
if ((obj->type == OBJ_WEAPON) && (pi->flags & PF_USES_THRUST) && (pi->flags & PF_HOMING)) {
pi->thrust = end_orient.fvec * pi->full_thrust;
movement_vec = obj->mtype.phys_info.velocity * Frametime;
movement_pos = obj->pos + movement_vec;
}
PhysicsDoSimLinear(*obj, obj->pos, total_force, end_vel, movement_vec, movement_pos, sim_time_remaining, count);
// Only do velocity until we've reached our destination position
// This is useful for multiplayer
if (obj->mtype.phys_info.flags & PF_DESTINATION_POS) {
vector sub1 = obj->pos - obj->mtype.phys_info.dest_pos;
vector sub2 = movement_pos - obj->mtype.phys_info.dest_pos;
if (vm_DotProduct(&sub1, &sub2) <= 0) {
obj->mtype.phys_info.flags &= ~PF_DESTINATION_POS;
vm_MakeZero(&obj->mtype.phys_info.velocity);
vm_MakeZero(&movement_vec);
movement_pos = obj->pos;
goto end_of_sim;
}
if ((vm_VectorDistanceQuick(&obj->mtype.phys_info.dest_pos, &obj->pos)) < 1) {
vm_MakeZero(&obj->mtype.phys_info.velocity);
obj->mtype.phys_info.flags &= ~PF_DESTINATION_POS;
goto end_of_sim;
}
}
// We are done, as there is no collision response with PF_NO_COLLIDE
if (obj->mtype.phys_info.flags & PF_NO_COLLIDE) {
obj->mtype.phys_info.rotvel = end_rotvel;
obj->mtype.phys_info.turnroll = end_turnroll;
obj->mtype.phys_info.velocity = end_vel;
// ObjSetOrient(obj,&end_orient);
ObjSetPos(obj, &movement_pos, obj->roomnum, NULL, false);
ObjSetAABB(obj);
obj->last_pos = init_pos;
goto end_of_sim;
}
Physics_normal_looping_counter++;
// Cap ignore list -- (Objects we already hit this frame)
ignore_obj_list[n_ignore_objs] = -1;
vector temp_vel = obj->mtype.phys_info.velocity;
obj->mtype.phys_info.velocity = (movement_pos - start_pos) / sim_time_remaining;
fq.p0 = &obj->pos;
fq.startroom = obj->roomnum;
fq.p1 = &movement_pos;
fq.rad = obj->size;
fq.thisobjnum = objnum;
fq.ignore_obj_list = ignore_obj_list;
fq.flags = FQ_CHECK_OBJS | FQ_RECORD;
if (f_start_fvi_record)
fq.flags |= FQ_NEW_RECORD_LIST;
fq.o_orient = &start_orient;
fq.o_rotvel = &start_rotvel;
fq.o_rotthrust = &obj->mtype.phys_info.rotthrust;
fq.o_turnroll = &start_turnroll;
fq.o_velocity = &start_vel;
fq.o_thrust = &total_force;
f_start_fvi_record = false;
// Need for weapons to go thru transparent areas of a texture
if (obj->type == OBJ_WEAPON)
fq.flags |= FQ_TRANSPOINT;
// Added a ceiling for players and powerups
if (obj->type == OBJ_POWERUP || (obj->type == OBJ_PLAYER && obj->control_type != CT_AI) ||
obj->type == OBJ_OBSERVER || (obj == Players[Player_object->id].guided_obj) ||
(obj->flags & OF_FORCE_CEILING_CHECK))
fq.flags |= FQ_CHECK_CEILING;
if ((obj->type == OBJ_WEAPON) && (obj->ctype.laser_info.hit_status != WPC_NOT_USED))
fq.flags |= FQ_IGNORE_WALLS;
if (obj->flags & OF_NO_OBJECT_COLLISIONS)
fq.flags &= ~FQ_CHECK_OBJS;
if (IS_GENERIC(obj->type) && (Object_info[obj->id].flags & OIF_IGNORE_FORCEFIELDS_AND_GLASS))
fq.flags |= FQ_IGNORE_RENDER_THROUGH_PORTALS;
// Initially assume that we fully move
hit_info.hit_turnroll = end_turnroll;
hit_info.hit_orient = end_orient;
hit_info.hit_rotvel = end_rotvel;
hit_info.hit_velocity = end_vel;
hit_info.hit_time = sim_time_remaining;
if (obj->type == OBJ_PLAYER) {
fq.flags |= FQ_MULTI_POINT;
}
fate = fvi_FindIntersection(&fq, &hit_info);
if (fate != HIT_NONE) {
if (obj->type == OBJ_PLAYER && hit_info.num_hits > 1) {
vector n = Zero_vector;
int i;
for (i = 0; i < hit_info.num_hits; i++) {
n += hit_info.hit_wallnorm[i];
}
hit_info.hit_wallnorm[0] = n;
}
vm_NormalizeVector(&hit_info.hit_wallnorm[0]);
}
obj->mtype.phys_info.velocity = temp_vel;
// Accounts for precomputed hit rays
if ((obj->type == OBJ_WEAPON) && (obj->ctype.laser_info.hit_status == WPC_HIT_WALL)) {
vector to_hit_pnt, to_fvi_pos;
if (fate == HIT_NONE) {
to_hit_pnt = obj->ctype.laser_info.hit_pnt - obj->pos;
to_fvi_pos = obj->ctype.laser_info.hit_pnt - hit_info.hit_pnt;
} else {
to_hit_pnt = obj->ctype.laser_info.hit_wall_pnt - obj->pos;
to_fvi_pos = obj->ctype.laser_info.hit_wall_pnt - hit_info.hit_face_pnt[0];
}
if ((to_hit_pnt * to_fvi_pos) <= 0.0f) {
fate = hit_info.hit_type[0] = HIT_WALL;
hit_info.hit_pnt = obj->ctype.laser_info.hit_pnt;
hit_info.hit_face_pnt[0] = obj->ctype.laser_info.hit_wall_pnt;
hit_info.hit_room = obj->ctype.laser_info.hit_room;
hit_info.hit_face_room[0] = obj->ctype.laser_info.hit_pnt_room;
hit_info.hit_wallnorm[0] = obj->ctype.laser_info.hit_wall_normal;
hit_info.hit_face[0] = obj->ctype.laser_info.hit_face;
obj->ctype.laser_info.hit_status = WPC_NOT_USED;
}
}
// chrishack -- move all FVI ASSERT to here!
ASSERT(fate != HIT_WALL || (fate == HIT_WALL && hit_info.hit_face[0] > -1));
ASSERT(hit_info.hit_pnt.x > -100000000.0);
ASSERT(hit_info.hit_pnt.y > -100000000.0);
ASSERT(hit_info.hit_pnt.z > -100000000.0);
ASSERT(hit_info.hit_pnt.x < 100000000.0);
ASSERT(hit_info.hit_pnt.y < 100000000.0);
ASSERT(hit_info.hit_pnt.z < 100000000.0);
ASSERT(!(fate != HIT_OUT_OF_TERRAIN_BOUNDS && hit_info.hit_room == -1));
#ifdef _DEBUG
sim_loop_record[count].start_pos = obj->pos;
sim_loop_record[count].hit_info = hit_info;
if (fate != HIT_NONE) {
if (Physics_player_verbose) {
objnum = ObjCreate(OBJ_DEBUG_LINE, 1, hit_info.hit_room, &hit_info.hit_face_pnt[0], NULL);
if (objnum >= 0) { // DAJ -1FIX
Objects[objnum].rtype.line_info.end_pos = hit_info.hit_face_pnt[0] + hit_info.hit_wallnorm[0];
Objects[objnum].size = vm_VectorDistance(&Player_object->pos, &hit_info.hit_pnt);
ObjSetAABB(&Objects[objnum]);
Objects[objnum].flags |= OF_USES_LIFELEFT;
Objects[objnum].lifeleft = 10.0f;
Objects[objnum].lifetime = 10.0f;
}
if (obj == Player_object) {
if (fate == HIT_OBJECT || fate == HIT_SPHERE_2_POLY_OBJECT) {
if (Objects[hit_info.hit_object[0]].flags & OF_BIG_OBJECT) {
LOG_DEBUG.printf("Fate = %d for player - Big object", fate);
} else {
LOG_DEBUG.printf("Fate = %d for player - Small object", fate);
}
} else {
LOG_DEBUG.printf("Fate = %d for player - non-object", fate);
}
}
}
}
#endif
if (f_set_orient) {
obj->mtype.phys_info.turnroll = hit_info.hit_turnroll;
obj->mtype.phys_info.rotvel = hit_info.hit_rotvel;
f_set_orient = false;
}
obj->mtype.phys_info.velocity = hit_info.hit_velocity;
// Instant bails for collision response
if (obj->type == OBJ_PLAYER &&
((fate == HIT_OUT_OF_TERRAIN_BOUNDS) ||
(ROOMNUM_OUTSIDE(hit_info.hit_room) && GetTerrainCellFromPos(&hit_info.hit_pnt) == -1))) {
ObjSetPos(obj, &init_pos, init_room, NULL, false);
obj->last_pos = init_pos;
return;
} else if (fate == HIT_OUT_OF_TERRAIN_BOUNDS) {
SetObjectDeadFlag(obj);
obj->last_pos = init_pos;
return;
}
// This is so the collide code knows that last collision position if there are multiple collisions
obj->last_pos = obj->pos;
// update object's position and segment number
ObjSetPos(obj, &hit_info.hit_pnt, hit_info.hit_room, NULL, false);
// Calulate amount of sim time left
if (fate == HIT_NONE) {
moved_time = old_sim_time_remaining = sim_time_remaining;
sim_time_remaining = 0.0;
f_continue_sim = false;
} else {
vm_NormalizeVector(&hit_info.hit_wallnorm[0]);
vector moved_vec_n;
float attempted_dist, actual_dist;
// Save results of this simulation
old_sim_time_remaining = sim_time_remaining;
moved_vec_n = obj->pos - start_pos; // chrishack -- use this copy
if (moved_vec_n != Zero_vector) {
actual_dist = vm_NormalizeVector(&moved_vec_n);
} else {
actual_dist = 0.0f;
}
// chrishack -- potentially bad -- outside to inside stuff
// We where sitting in a wall -- invalid starting point
// moved backwards
if (fate == HIT_WALL && moved_vec_n * movement_vec < -0.000001 && actual_dist != 0.0) {
ObjSetPos(obj, &start_pos, start_room, NULL, false);
moved_time = 0.0;
} else {
// Compute more results of this simulation
attempted_dist = vm_GetMagnitude(&movement_vec);
sim_time_remaining = sim_time_remaining * ((attempted_dist - actual_dist) / attempted_dist);
moved_time = old_sim_time_remaining - sim_time_remaining;
// chrishack -- we have no time left (plus some) This can happen if FVI corrects a near tangental
// movement by adding the radius - thus, we move a little too far.
if (sim_time_remaining < 0.0) {
sim_time_remaining = 0.0;
moved_time = old_sim_time_remaining;
}
// chrishack -- negative simulation time pasted for this sim frame
if (sim_time_remaining > old_sim_time_remaining) {
sim_time_remaining = old_sim_time_remaining;
moved_time = 0.0;
f_continue_sim = false;
}
}
// Get the collision speed as a linear interp.
if (fate == HIT_OBJECT || fate == HIT_SPHERE_2_POLY_OBJECT || fate == HIT_TERRAIN || fate == HIT_WALL) {
if (moved_time > 0.0001f) {
obj->mtype.phys_info.velocity = (hit_info.hit_pnt - start_pos) / moved_time;
} else {
// mprintf(0, "Moved time is ZERO\n"); -- Add this back -- chrishack
ASSERT(old_sim_time_remaining > 0.0f);
obj->mtype.phys_info.velocity = start_vel;
}
} else {
if (old_sim_time_remaining > 0.0) {
obj->mtype.phys_info.velocity = obj->mtype.phys_info.velocity * (moved_time / old_sim_time_remaining) +
start_vel * (sim_time_remaining / old_sim_time_remaining);
}
}
}
bounced = 0;
// Collision response code
switch (fate) {
case HIT_NONE:
if (obj->type == OBJ_WEAPON && (obj->mtype.phys_info.flags & (PF_GRAVITY | PF_WIND))) {
if (obj->mtype.phys_info.velocity != Zero_vector)
vm_VectorToMatrix(&obj->orient, &obj->mtype.phys_info.velocity, &obj->orient.uvec, NULL);
}
f_continue_sim = false;
break;
case HIT_WALL: // Finally unified, still needs some work, but it certainly better like this :)
case HIT_TERRAIN: {
bool f_volatile_lava; // either volatile or lava
bool f_forcefield;
float ff_bounce_factor = 2.0f;
// Check if volatile
int tmap;
if (!ROOMNUM_OUTSIDE(hit_info.hit_face_room[0])) // Make sure we've hit a wall, and not terrain
{
tmap = Rooms[hit_info.hit_face_room[0]].faces[hit_info.hit_face[0]].tmap;
} else {
tmap = Terrain_tex_seg[Terrain_seg[CELLNUM(hit_info.hit_face_room[0])].texseg_index].tex_index;
}
f_volatile_lava = (GameTextures[tmap].flags & (TF_VOLATILE + TF_LAVA)) != 0;
f_forcefield = (GameTextures[tmap].flags & TF_FORCEFIELD) != 0;
if (f_forcefield) {
int i;
for (i = 0; i < MAX_FORCE_FIELD_BOUNCE_TEXTURES; i++) {
if (tmap == force_field_bounce_texture[i]) {
ff_bounce_factor = force_field_bounce_multiplier[i];
break;
}
}
}
{
vector moved_v;
float hit_speed, wall_part;
float hit_dot = 1.0;
float luke_test;
if (obj->type == OBJ_PLAYER) {
luke_test = vm_GetMagnitude(&obj->mtype.phys_info.velocity);
}
// Find hit speed
moved_v = obj->pos - start_pos; // chrishack -- We already computed this!!!!!!!
wall_part = moved_v * hit_info.hit_wallnorm[0];
if (obj->mtype.phys_info.hit_die_dot > 0.0) {
vector m_normal = start_pos - obj->pos;
vm_NormalizeVector(&m_normal);
hit_dot = m_normal * hit_info.hit_wallnorm[0];
}
hit_speed = -(wall_part / moved_time);
// Process wall hit
bool hit_wall = collide_object_with_wall(obj, hit_speed, hit_info.hit_face_room[0], hit_info.hit_face[0],
&hit_info.hit_face_pnt[0], &hit_info.hit_wallnorm[0], hit_dot);
if (!(obj->flags & OF_DEAD)) {
// Check for not really hitting the wall (because it was glass & broke)
if (!hit_wall) {
f_continue_sim = true;
break;
}
if (obj->type == OBJ_WEAPON && ((obj->mtype.phys_info.flags & PF_BOUNCE) || f_forcefield))
obj->mtype.phys_info.flags &= (~PF_NO_COLLIDE_PARENT);
// Slide object along wall
// We're constrained by wall, so subtract wall part from the velocity vector
wall_part = hit_info.hit_wallnorm[0] * obj->mtype.phys_info.velocity;
if (!f_forcefield && !f_volatile_lava && (obj->mtype.phys_info.num_bounces <= 0) &&
(obj->mtype.phys_info.flags & PF_STICK)) {
obj->movement_type = MT_NONE;
if (!ROOMNUM_OUTSIDE(hit_info.hit_face_room[0])) {
if (GameTextures[Rooms[hit_info.hit_face_room[0]].faces[hit_info.hit_face[0]].tmap].flags &
(TF_VOLATILE | TF_LAVA)) {
SetObjectDeadFlag(obj);
}
} else {
if (GameTextures[Terrain_tex_seg[Terrain_seg[CELLNUM(hit_info.hit_room)].texseg_index].tex_index].flags &
(TF_VOLATILE | TF_LAVA)) {
SetObjectDeadFlag(obj);
}
}
if (!ROOMNUM_OUTSIDE(hit_info.hit_face_room[0]) &&
(Rooms[hit_info.hit_face_room[0]].faces[hit_info.hit_face[0]].portal_num >= 0)) {
obj->flags |= OF_STUCK_ON_PORTAL;
obj->mtype.phys_info.stuck_room = hit_info.hit_face_room[0];
obj->mtype.phys_info.stuck_portal =
Rooms[hit_info.hit_face_room[0]].faces[hit_info.hit_face[0]].portal_num;
}
vm_MakeZero(&obj->mtype.phys_info.velocity);
obj->last_pos = init_pos;
goto end_of_sim;
} else if (f_volatile_lava || f_forcefield || (obj->mtype.phys_info.flags & PF_BOUNCE)) {
wall_part *= 2.0; // Subtract out wall part twice to achieve bounce
bounced = 1; // this object bounced
if (f_forcefield) {
if (obj->type == OBJ_PLAYER)
wall_part *= ff_bounce_factor; // player bounce twice as much -- chrishack try without this too.
}
// New bounceness code
if (!f_forcefield && (obj->mtype.phys_info.flags & PF_BOUNCE) &&
(obj->mtype.phys_info.num_bounces != PHYSICS_UNLIMITED_BOUNCE)) {
if (obj->mtype.phys_info.num_bounces == 0) {
if (obj->type != OBJ_PLAYER && (obj->flags & OF_DYING)) {
ASSERT((obj->control_type == CT_DYING) || (obj->control_type == CT_DYING_AND_AI));
DestroyObject(obj, 50.0, obj->ctype.dying_info.death_flags);
} else {
if (obj->type != OBJ_PLAYER)
SetObjectDeadFlag(obj);
else
LOG_WARNING << "Got a ship that was set for bounce!!! BAD!!!";
}
}
obj->mtype.phys_info.num_bounces--;
}
{
float v_mag = vm_GetMagnitude(&obj->mtype.phys_info.velocity);
if (obj->type == OBJ_CLUTTER && hit_info.hit_wallnorm[0].y > .4 &&
(obj->mtype.phys_info.velocity * hit_info.hit_wallnorm[0] > -2.0f)) {
if (obj->mtype.phys_info.flags & PF_GRAVITY) {
f_turn_gravity_on = true;
obj->mtype.phys_info.flags &= (~(PF_GRAVITY | PF_BOUNCE));
obj->mtype.phys_info.drag *= 300.0f;
}
if (v_mag < 1.8f) {
obj->mtype.phys_info.velocity = Zero_vector;
obj->mtype.phys_info.rotvel = Zero_vector;
goto skip_sim;
} else {
goto slide_sim;
}
}
if (!f_forcefield && !(f_volatile_lava && obj->type == OBJ_PLAYER))
bump_obj_against_fixed(obj, &hit_info.hit_face_pnt[0], &hit_info.hit_wallnorm[0]);
else
obj->mtype.phys_info.velocity += hit_info.hit_wallnorm[0] * (wall_part * -1.0f);
}
} else {
slide_sim:
float wall_force;
wall_force = total_force * hit_info.hit_wallnorm[0];
if (obj->type != OBJ_CLUTTER)
total_force +=
hit_info.hit_wallnorm[0] * (wall_force * -1.001f); // 1.001 so that we are not quite tangential
else
total_force +=
hit_info.hit_wallnorm[0] * (wall_force * -1.0001f); // 1.001 so that we are not quite tangential
// Update velocity from wall hit.
if (obj->type != OBJ_CLUTTER)
obj->mtype.phys_info.velocity +=
hit_info.hit_wallnorm[0] * (wall_part * -1.001f); // 1.001 so that we are not quite tangential
else
obj->mtype.phys_info.velocity +=
hit_info.hit_wallnorm[0] * (wall_part * -1.0001f); // 1.001 so that we are not quite tangential
if ((obj->type == OBJ_ROBOT || obj->type == OBJ_PLAYER || (obj->type == OBJ_BUILDING && obj->ai_info)) &&
sim_time_remaining == old_sim_time_remaining) {
obj->mtype.phys_info.velocity += hit_info.hit_wallnorm[0];
}
if (obj->type == OBJ_PLAYER) {
float real_vel;
real_vel = vm_NormalizeVector(&obj->mtype.phys_info.velocity);
obj->mtype.phys_info.velocity *= ((real_vel + luke_test) / 2);
// obj->mtype.phys_info.velocity *= (luke_test);
} else if (obj->type == OBJ_CLUTTER && !(obj->mtype.phys_info.flags & PF_LOCK_MASK)) {
// Do rolling rotvel hack
obj->mtype.phys_info.rotvel = Zero_vector;
if (obj->mtype.phys_info.velocity != Zero_vector) {
vector axis;
float speed = vm_GetMagnitude(&obj->mtype.phys_info.velocity);
vm_CrossProduct(&axis, &obj->mtype.phys_info.velocity, &hit_info.hit_wallnorm[0]);
vm_NormalizeVector(&axis);
axis = axis * obj->orient;
float scale = speed * 65535.0f / (2.0f * PI * obj->size);
obj->mtype.phys_info.rotvel = axis * -scale;
}
}
}
skip_sim:
// mprintf(0, "PHYSICS: Wall normal (%f, %f, %f)\n", XYZ(&hit_info.hit_wallnorm[0]));
// mprintf(0, "PHYSICS: Bounded velocity (%f, %f, %f)\n", XYZ(&obj->mtype.phys_info.velocity));
// This only happens if the new velocity is set from hitting a forcefield.
if (!(fabs(obj->mtype.phys_info.velocity.x) < MAX_OBJECT_VEL &&
fabs(obj->mtype.phys_info.velocity.y) < MAX_OBJECT_VEL &&
fabs(obj->mtype.phys_info.velocity.z) < MAX_OBJECT_VEL)) {
float mag = vm_NormalizeVector(&obj->mtype.phys_info.velocity);
LOG_DEBUG.printf("Bashing vel for Obj %d of type %d with %f velocity", objnum, obj->type, mag);
obj->mtype.phys_info.velocity *= MAX_OBJECT_VEL * 0.1f;
}
// Weapons should face their new heading. This is so missiles are pointing in the correct direct.
if (obj->type == OBJ_WEAPON && (bounced || (obj->mtype.phys_info.flags & (PF_GRAVITY | PF_WIND))))
if (obj->mtype.phys_info.velocity != Zero_vector)
vm_VectorToMatrix(&obj->orient, &obj->mtype.phys_info.velocity, &obj->orient.uvec, NULL);
}
}
f_continue_sim = true;
} break;
case HIT_CEILING: {
vector moved_v;
float wall_part;
float luke_test;
if (obj->type == OBJ_PLAYER) {
luke_test = vm_GetMagnitude(&obj->mtype.phys_info.velocity);
}
// Find hit speed
moved_v = obj->pos - start_pos; // chrishack -- We already computed this!!!!!!!
wall_part = moved_v * hit_info.hit_wallnorm[0];
// We're constrained by wall, so subtract wall part from the velocity vector
wall_part = hit_info.hit_wallnorm[0] * obj->mtype.phys_info.velocity;
if (obj->mtype.phys_info.flags & PF_BOUNCE) {
wall_part *= 2.0; // Subtract out wall part twice to achieve bounce
obj->mtype.phys_info.velocity += hit_info.hit_wallnorm[0] * (wall_part * -1.0f);
if (obj->mtype.phys_info.coeff_restitution != 1.0f)
obj->mtype.phys_info.velocity -=
(obj->mtype.phys_info.velocity * (1.0f - obj->mtype.phys_info.coeff_restitution));
} else {
float wall_force;
wall_force = total_force * hit_info.hit_wallnorm[0];
total_force += hit_info.hit_wallnorm[0] * (wall_force * -1.001); // 1.001 so that we are not quite tangential
// Update velocity from wall hit.
obj->mtype.phys_info.velocity +=
hit_info.hit_wallnorm[0] * (wall_part * -1.001); // 1.001 so that we are not quite tangential
if (obj->type == OBJ_PLAYER) {
float real_vel;
real_vel = vm_NormalizeVector(&obj->mtype.phys_info.velocity);
obj->mtype.phys_info.velocity *= ((real_vel + luke_test) / 2.0f);
// obj->mtype.phys_info.velocity *= (luke_test);
}
}
// This only happens if the new velocity is set from hitting a forcefield.
ASSERT(fabs(obj->mtype.phys_info.velocity.x) < MAX_OBJECT_VEL &&
fabs(obj->mtype.phys_info.velocity.y) < MAX_OBJECT_VEL &&
fabs(obj->mtype.phys_info.velocity.z) < MAX_OBJECT_VEL);
// Weapons should face their new heading. This is so missiles are pointing in the correct direct.
if (obj->type == OBJ_WEAPON && (bounced || (obj->mtype.phys_info.flags & (PF_GRAVITY | PF_WIND))))
vm_VectorToMatrix(&obj->orient, &obj->mtype.phys_info.velocity, &obj->orient.uvec, NULL);
f_continue_sim = true;
} break;
case HIT_OBJECT:
case HIT_SPHERE_2_POLY_OBJECT: {
vector old_force; // -- chrishack
// Mark the hit object so that on the following sim frames, in this game frame, ignore this object.
ASSERT(hit_info.hit_object[0] != -1); // chrishack move this ASSERT fvi stuff above
// chrishack -- we should have this point from FVI!!!!!!!!!!!
// Calculcate the hit point between the two objects.
old_force = obj->mtype.phys_info.thrust;
obj->mtype.phys_info.thrust = total_force;
collide_two_objects(obj, &Objects[hit_info.hit_object[0]], &hit_info.hit_face_pnt[0], &hit_info.hit_wallnorm[0],
&hit_info);
if (obj->movement_type == MT_OBJ_LINKED)
goto end_of_sim;
total_force = obj->mtype.phys_info.thrust;
obj->mtype.phys_info.thrust = old_force;
if ((obj->type != OBJ_POWERUP && Objects[hit_info.hit_object[0]].type != OBJ_POWERUP) &&
(obj->type == OBJ_CLUTTER || obj->type == OBJ_ROBOT || obj->type == OBJ_PLAYER ||
(obj->type == OBJ_BUILDING && obj->ai_info)) &&
sim_time_remaining == old_sim_time_remaining &&
(Objects[hit_info.hit_object[0]].movement_type == MT_NONE ||
(Objects[hit_info.hit_object[0]].mtype.phys_info.velocity == Zero_vector &&
(Objects[hit_info.hit_object[0]].mtype.phys_info.flags & PF_LOCK_MASK)))) {
obj->mtype.phys_info.velocity += hit_info.hit_wallnorm[0];
}
// Let object continue its movement if collide_two_objects does not mark it as dead
if (!(obj->flags & OF_DEAD)) {
if ((obj->mtype.phys_info.flags & PF_PERSISTENT) ||
(Objects[hit_info.hit_object[0]].mtype.phys_info.flags & PF_PERSISTENT)) {
if (n_ignore_objs < MAX_IGNORE_OBJS) {
ignore_obj_list[n_ignore_objs++] = hit_info.hit_object[0];
count--;
if (count < -1)
count = -1;
}
if (obj->type == OBJ_WEAPON && (obj->mtype.phys_info.flags & PF_PERSISTENT))
obj->ctype.laser_info.last_hit_handle = Objects[hit_info.hit_object[0]].handle;
if (Objects[hit_info.hit_object[0]].type == OBJ_WEAPON &&
(Objects[hit_info.hit_object[0]].mtype.phys_info.flags & PF_PERSISTENT))
Objects[hit_info.hit_object[0]].ctype.laser_info.last_hit_handle = obj->handle;
} else if (Objects[hit_info.hit_object[0]].type == OBJ_POWERUP || obj->type == OBJ_POWERUP ||
Objects[hit_info.hit_object[0]].type == OBJ_MARKER || obj->type == OBJ_MARKER) {
if (n_ignore_objs < MAX_IGNORE_OBJS)
ignore_obj_list[n_ignore_objs++] = hit_info.hit_object[0];
count--;
if (count < -1)
count = -1;
}
f_continue_sim = true;
} else {
f_continue_sim = false;
}
} break;
case HIT_BAD_P0:
LOG_ERROR << "Bad p0 in physics!!!";
Int3(); // Unexpected collision type: start point not in specified segment.
break;
default:
LOG_ERROR << "Unknown and unhandled hit type returned from FVI";
Int3();
break;
}
// Increment the simulation loop counter
count++;
} while ((f_continue_sim) && (!(obj->flags & OF_DEAD)) && (sim_time_remaining > 0.0f) && (count < sim_loop_limit));
// Special stuff should we do if we hit the simulation loop limit
// If retry count is getting large, then we might be trying to do something bad.
// NOTE: These numbers limit the max collisions an object can have in a single frame
if (count >= sim_loop_limit) {
if (obj->type == OBJ_PLAYER) {
LOG_WARNING << "Too many collisions for player!";
obj->mtype.phys_info.velocity = Zero_vector;
}
}
end_of_sim:
if (f_turn_gravity_on) {
obj->mtype.phys_info.flags |= (PF_GRAVITY | PF_BOUNCE);
obj->mtype.phys_info.drag /= 300.0f;
}
AttachUpdateSubObjects(obj);
ASSERT(std::isfinite(obj->mtype.phys_info.velocity.x)); // Caller wants to go to infinity! -- Not FVI's fault.
ASSERT(std::isfinite(obj->mtype.phys_info.velocity.y)); // Caller wants to go to infinity! -- Not FVI's fault.
ASSERT(std::isfinite(obj->mtype.phys_info.velocity.z)); // Caller wants to go to infinity! -- Not FVI's fault.
obj->last_pos = init_pos;
return;
}
int PhysCastWalkRay(object *obj, vector *p0, vector *p1, vector *hitpnt, int *start_roomnum = NULL,
int *end_roomnum = NULL, vector *hit_normal = NULL) {
int fate;
fvi_info hit_info;
fvi_query fq;
fq.p0 = p0;
fq.p1 = p1;
if (start_roomnum)
fq.startroom = *start_roomnum;
else
fq.startroom = obj->roomnum;
fq.rad = 0.0f;
fq.flags = FQ_CHECK_OBJS | FQ_IGNORE_POWERUPS | FQ_IGNORE_WEAPONS | FQ_IGNORE_MOVING_OBJECTS |
FQ_IGNORE_NON_LIGHTMAP_OBJECTS;
if (!end_roomnum)
fq.flags |= FQ_NO_RELINK;
fq.thisobjnum = OBJNUM(obj);
fq.ignore_obj_list = NULL;
fate = fvi_FindIntersection(&fq, &hit_info);
if (end_roomnum)
*end_roomnum = hit_info.hit_room;
if (hit_normal)
*hit_normal = hit_info.hit_wallnorm[0];
if (fate == HIT_WALL) {
if (GameTextures[Rooms[hit_info.hit_face_room[0]].faces[hit_info.hit_face[0]].tmap].flags &
(TF_VOLATILE | TF_FORCEFIELD | TF_LAVA)) {
return HIT_NONE;
}
}
*hitpnt = hit_info.hit_pnt;
return fate;
}
void PhysCalPntOnCPntPlane(object *obj, vector *s_pnt, vector *d_pnt, float *dist) {
vector tpnt = *s_pnt - obj->pos;
*dist = obj->orient.uvec * tpnt;
*d_pnt = *s_pnt + ((-(*dist)) * obj->orient.uvec);
}
bool PhysComputeWalkerPosOrient(object *obj, vector *pos, matrix *orient) {
vector pnt[3];
vector tpnt = obj->pos;
matrix tmatrix = obj->orient;
poly_model *pm = &Poly_models[obj->rtype.pobj_info.model_num];
int num_gps = (pm->n_ground == 5) ? 3 : 1;
int i;
bool f_ok = true;
obj->pos = *pos;
obj->orient = *orient;
for (i = 0; i < num_gps; i++) {
PhysCalcGround(&pnt[i], NULL, obj, i);
}
obj->pos = tpnt;
obj->orient = tmatrix;
if (num_gps == 3) {
vector pp[3];
float pdist[3];
int proom[3];
vector hp[3];
for (i = 0; i < 3; i++)
PhysCalPntOnCPntPlane(obj, &pnt[i], &pp[i], &pdist[i]);
// Moves the points to valid locations in the mine and determines the points' room numbers
for (i = 0; i < 3; i++) {
vector x;
vector norm;
int fate = PhysCastWalkRay(obj, &obj->pos, &pp[i], &x, NULL, &proom[i], &norm);
if (fate != HIT_NONE) {
if (norm * obj->orient.uvec < 0.4717f) {
return false;
}
pp[i] = x;
}
}
int num_ave = 0;
vector ave_diff = Zero_vector;
for (i = 0; i < 3; i++) {
int fate;
vector foot_pnt = pp[i] + obj->orient.uvec * -(obj->size * 1.5f);
vector norm;
fate = PhysCastWalkRay(obj, &pp[i], &foot_pnt, &hp[i], &proom[i], NULL, &norm);
if (fate != HIT_NONE) {
if (norm * obj->orient.uvec < 0.4717f) {
return false;
}
ave_diff += hp[i] - pnt[i];
num_ave++;
} else {
f_ok = false;
}
}
if (num_ave > 0) {
ave_diff /= num_ave;
} else
ave_diff = Zero_vector;
vector uvec;
vm_GetPerp(&uvec, &hp[0], &hp[1], &hp[2]);
vm_NormalizeVector(&uvec);
// if(uvec.y < 0.0)
// uvec *= -1.0f;
float dot = orient->fvec * uvec;
vector fvec = orient->fvec;
fvec -= (uvec * dot);
vm_NormalizeVector(&fvec);
vm_VectorToMatrix(orient, &fvec, &uvec, NULL);
*pos += ave_diff;
} else { // Alignd to Y-axis
int fate;
vector hp;
vector foot_pnt = obj->pos;
foot_pnt.y -= obj->size * 3.0f;
fate = PhysCastWalkRay(obj, &obj->pos, &foot_pnt, &hp);
if (fate == HIT_NONE) {
LOG_WARNING.printf("Walking object %d should be falling", OBJNUM(obj));
// SetObjectDeadFlag(obj);
f_ok = false;
} else {
float diff = hp.y - pnt[0].y;
pos->y += diff;
angvec a;
vm_ExtractAnglesFromMatrix(&a, orient);
vm_AnglesToMatrix(orient, 0.0f, a.h, 0.0f);
}
}
return f_ok;
}
bool IsNodeValid(int cell, float min_vert_dot) {
if (TerrainNormals[MAX_TERRAIN_LOD - 1][cell].normal1.y >= min_vert_dot &&
TerrainNormals[MAX_TERRAIN_LOD - 1][cell].normal2.y >= min_vert_dot)
return true;
else
return false;
}
bool PhysValidateGroundPath(object *obj, vector *s, int sroom, vector *e, int eroom, float rad, float min_vert_dot) {
if (ROOMNUM_OUTSIDE(sroom)) {
int x1, x2, y1, y2, x, y, delta_y, delta_x, change_x, change_y, length, cur_node, error_term, i;
int new_x, new_y;
int counter;
int delta_ter_check = rad / TERRAIN_SIZE + 1;
// Determine the start end end nodes
x1 = CELLNUM(sroom) % TERRAIN_WIDTH;
y1 = CELLNUM(sroom) / TERRAIN_WIDTH;
x2 = CELLNUM(eroom) % TERRAIN_WIDTH;
y2 = CELLNUM(eroom) / TERRAIN_WIDTH;
x = x1;
y = y1;
// How many nodes did I move?
delta_x = x2 - x1;
delta_y = y2 - y1;
// Check the current node
if (!IsNodeValid(CELLNUM(sroom), min_vert_dot)) {
return false;
}
if (delta_x == 0 && delta_y == 0)
return true;
// check the end node
cur_node = y1 * TERRAIN_DEPTH + x2;
if (!IsNodeValid(cur_node, min_vert_dot)) {
return false;
}
// Do a Breshenham line algorithm
if (delta_x < 0) {
change_x = -1;
delta_x = -delta_x;
} else {
change_x = 1;
}
if (delta_y < 0) {
change_y = -1;
delta_y = -delta_y;
} else {
change_y = 1;
}
error_term = 0;
i = 1;
if (delta_x < delta_y) {
length = delta_y + 1;
while (i < length) {
y += change_y;
error_term += delta_x;
if (error_term >= delta_y) {
x += change_x;
error_term -= delta_y;
}
if (y >= TERRAIN_DEPTH || y < 0 || x < 0 || x >= TERRAIN_WIDTH) {
return false;
}
for (counter = -delta_ter_check; counter <= delta_ter_check; counter++) {
new_x = x + counter;
if (new_x < 0) {
counter = -x;
new_x = 0;
}
if (new_x >= TERRAIN_WIDTH)
break;
// Check the current node for collisions -- chrishack -- This can be made iterative
cur_node = y * TERRAIN_DEPTH + new_x;
if (!IsNodeValid(cur_node, min_vert_dot)) {
return false;
}
}
i++;
}
} else {
length = delta_x + 1;
while (i < length) {
x += change_x;
error_term += delta_y;
if (error_term >= delta_x) {
y += change_y;
error_term -= delta_x;
}
if (y >= TERRAIN_DEPTH || y < 0 || x < 0 || x >= TERRAIN_WIDTH) {
return false;
}
for (counter = -delta_ter_check; counter <= delta_ter_check; counter++) {
new_y = y + counter;
if (new_y < 0) {
counter = -y;
new_y = 0;
}
if (new_y >= TERRAIN_DEPTH)
break;
// Check the current node for collisions -- chrishack -- This can be made iterative
cur_node = new_y * TERRAIN_DEPTH + x;
if (!IsNodeValid(cur_node, min_vert_dot)) {
return false;
}
}
i++;
}
}
return true;
} else {
return true;
}
}
// -----------------------------------------------------------------------------------------------------------
// Simulate a physics object for this frame
void do_walking_sim(object *obj) {
// Since we might not call FVI, set this here
Fvi_num_recorded_faces = 0;
int n_ignore_objs = 0; // The number of ignored objects
int ignore_obj_list[MAX_IGNORE_OBJS + 1]; // List of ignored objects
int fate; // Collision type for response code
vector movement_vec; // Movement in this frame
vector movement_pos; // End point of the movement
int count = 0; // Simulation loop counter
int sim_loop_limit = (obj->type == OBJ_PLAYER) ? MAX_PLAYER_SIM_LOOPS : MAX_NON_PLAYER_SIM_LOOPS;
int objnum = OBJNUM(obj); // Simulated object's index
fvi_info hit_info; // Hit information
fvi_query fq; // Movement query
float sim_time_remaining = Frametime; // Amount of simulation time remaining (current iteration)
float old_sim_time_remaining = Frametime; // Amount of simulation time remaining (previous iteration)
vector init_pos = obj->pos; // Initial position
int init_room = obj->roomnum; // Initial room
vector start_pos = obj->pos; // Values at the start of current simulation loop
vector start_vel = obj->mtype.phys_info.velocity;
int start_room = obj->roomnum;
float moved_time; // How long objected moved before hit something
physics_info *pi = &obj->mtype.phys_info; // Simulated object's physics information
int bounced = 0; // Did the object bounce?
vector total_force = Zero_vector; // Constant force acting on an object
bool f_continue_sim; // Should we run another simulation loop
bool f_start_fvi_record = true; // Records the rooms that are passed thru
poly_model *pm = &Poly_models[obj->rtype.pobj_info.model_num];
// Assert conditions
ASSERT(obj->type != OBJ_NONE);
ASSERT(obj->movement_type == MT_WALKING);
ASSERT(!(obj->mtype.phys_info.flags & PF_USES_THRUST) || obj->mtype.phys_info.drag != 0.0);
ASSERT(std::isfinite(obj->mtype.phys_info.velocity.x)); // Caller wants to go to infinity! -- Not FVI's fault.
ASSERT(std::isfinite(obj->mtype.phys_info.velocity.y)); // Caller wants to go to infinity! -- Not FVI's fault.
ASSERT(std::isfinite(obj->mtype.phys_info.velocity.z)); // Caller wants to go to infinity! -- Not FVI's fault.
#ifdef _DEBUG
if (!Game_do_walking_sim) {
return;
}
#endif
// Instant bail cases
if ((obj->flags & (OF_DEAD | OF_ATTACHED)) || (Frametime <= 0.0) || (obj->type == OBJ_DUMMY)) {
return;
}
obj->flags &= (~OF_STOPPED_THIS_FRAME);
// Do rotation velocity/accel stuff
bool f_rotated = false;
if (!(fabs(pi->velocity.x) > .000001 || fabs(pi->velocity.y) > .000001 || fabs(pi->velocity.z) > .000001 ||
fabs(pi->thrust.x) > .000001 || fabs(pi->thrust.y) > .000001 || fabs(pi->thrust.z) > .000001 ||
fabs(pi->rotvel.x) > .000001 || fabs(pi->rotvel.y) > .000001 || fabs(pi->rotvel.z) > .000001 ||
fabs(pi->rotthrust.x) > .000001 || fabs(pi->rotthrust.y) > .000001 || fabs(pi->rotthrust.z) > .000001 ||
(obj->mtype.phys_info.flags & PF_GRAVITY) ||
((!ROOMNUM_OUTSIDE(obj->roomnum)) && Rooms[obj->roomnum].wind != Zero_vector) ||
(obj->mtype.phys_info.flags & PF_WIGGLE) ||
((obj->ai_info != NULL) && ((obj->ai_info->flags & AIF_REPORT_NEW_ORIENT) != 0)))) {
if ((obj->flags & OF_MOVED_THIS_FRAME)) {
obj->flags &= (~OF_MOVED_THIS_FRAME);
obj->flags |= OF_STOPPED_THIS_FRAME;
}
return;
}
if (obj->ai_info) {
if (obj->ai_info->flags & AIF_REPORT_NEW_ORIENT) {
if (pm->n_ground == 5) {
vector pos = obj->pos;
matrix orient = obj->orient;
if (PhysComputeWalkerPosOrient(obj, &pos, &orient) &&
((!obj->ai_info) || (orient.uvec * obj->orient.uvec > .7101 && orient.fvec * obj->orient.fvec > .7101 &&
orient.rvec * obj->orient.rvec > .7101)))
ObjSetPos(obj, &pos, obj->roomnum, &orient, false);
else
ObjSetOrient(obj, &obj->ai_info->saved_orient);
}
obj->ai_info->flags &= ~AIF_REPORT_NEW_ORIENT;
}
}
obj->flags |= OF_MOVED_THIS_FRAME;
// This assumes that the thrust does not change within a frame. If it does, account for it
// there... like missiles bouncing off a wall and changing heading. --chrishack
if (obj->mtype.phys_info.drag != 0.0) {
if (obj->mtype.phys_info.flags & PF_USES_THRUST) {
total_force = obj->mtype.phys_info.thrust;
}
}
// mprintf(0, "PHYSICS: Current obj: %d, %9.2fx %9.2fy %9.2fz\n", OBJNUM(obj), XYZ(&obj->pos));
// mprintf(2,1,0,"x %9.2f\ny %9.2f\nz %9.2f", XYZ(&obj->mtype.phys_info.velocity));
// mprintf(0, "PHYSICS: Current velocity (%f, %f, %f)\n", XYZ(&obj->mtype.phys_info.velocity));
Physics_normal_counter++;
// Simulate movement until we are done (i.e. Frametime has passed or object is done moving)
do {
obj->mtype.phys_info.rotvel = Zero_vector;
#ifdef _DEBUG
// This records the sim.
sim_loop_record[count].phys_info = obj->mtype.phys_info;
#endif
// Remove transient portions of the velocity
vector t = (obj->mtype.phys_info.velocity * obj->orient.uvec) * obj->orient.uvec;
obj->mtype.phys_info.velocity -= t;
// Initailly assume that this is the last sim cycle
f_continue_sim = false;
// Determines forces
if (count > 0) {
total_force.x = total_force.y = total_force.z = 0.0;
}
{
movement_vec = pi->velocity * Frametime;
movement_pos = obj->pos + movement_vec;
vector footstep = movement_pos;
int new_room;
if (ROOMNUM_OUTSIDE(obj->roomnum)) {
new_room = GetTerrainRoomFromPos(&footstep);
} else {
new_room = obj->roomnum;
}
bool f_step;
if (PhysValidateGroundPath(obj, &obj->pos, obj->roomnum, &footstep, new_room, obj->size, 0.6f)) {
f_step = true;
// Determine endpos
matrix norient;
norient = obj->orient;
if (PhysComputeWalkerPosOrient(obj, &footstep, &norient)) {
if (norient.uvec * obj->orient.uvec > .7101 && norient.fvec * obj->orient.fvec > .7101 &&
norient.rvec * obj->orient.rvec > .7101) {
ObjSetOrient(obj, &norient);
movement_vec = footstep - obj->pos;
movement_pos = footstep;
fq.p0 = &obj->pos;
fq.startroom = obj->roomnum;
fq.p1 = &footstep;
fq.rad = obj->size;
fq.thisobjnum = objnum;
fq.ignore_obj_list = NULL;
fq.flags = FQ_CHECK_OBJS | FQ_IGNORE_WEAPONS | FQ_IGNORE_POWERUPS | FQ_IGNORE_TERRAIN;
if (obj->mtype.phys_info.flags & PF_POINT_COLLIDE_WALLS) {
fq.rad = 0.0f;
} else if (!ROOMNUM_OUTSIDE(obj->roomnum)) {
poly_model *pm = &Poly_models[obj->rtype.pobj_info.model_num];
int num_gps = (pm->n_ground == 5) ? 3 : 1;
if (num_gps == 3)
fq.rad *= 0.2f;
else
fq.rad *= 0.45f;
}
if (obj->flags & OF_NO_OBJECT_COLLISIONS)
fq.flags &= ~FQ_CHECK_OBJS;
fate = fvi_FindIntersection(&fq, &hit_info);
norient = obj->orient;
if (PhysComputeWalkerPosOrient(obj, &hit_info.hit_pnt, &norient)) {
ObjSetPos(obj, &hit_info.hit_pnt, hit_info.hit_room, &norient, false);
} else {
f_step = false;
}
} else {
f_step = false;
movement_vec = Zero_vector;
}
} else {
f_step = false;
movement_vec = Zero_vector;
}
} else {
f_step = false;
}
if (!f_step) {
pi->velocity = Zero_vector;
break;
}
// If we are stationary, we are done :)
if (fabs(movement_vec.x) < 0.0000001 && fabs(movement_vec.y) < 0.0000001 && fabs(movement_vec.z) < 0.0000001)
break;
}
Physics_walking_looping_counter++;
// Instant bails for collision response
if (obj->type == OBJ_PLAYER &&
((fate == HIT_OUT_OF_TERRAIN_BOUNDS) ||
(ROOMNUM_OUTSIDE(hit_info.hit_room) && GetTerrainCellFromPos(&hit_info.hit_pnt) == -1))) {
ObjSetPos(obj, &init_pos, init_room, NULL, false);
obj->last_pos = init_pos;
goto end_of_sim;
} else if (fate == HIT_OUT_OF_TERRAIN_BOUNDS) {
LOG_WARNING << "Walker exited terrain";
SetObjectDeadFlag(obj);
obj->last_pos = init_pos;
goto end_of_sim;
}
// Calulate amount of sim time left
if (fate == HIT_NONE) {
moved_time = old_sim_time_remaining = sim_time_remaining;
sim_time_remaining = 0.0;
f_continue_sim = false;
} else {
vector moved_vec_n;
float attempted_dist, actual_dist;
// Save results of this simulation
old_sim_time_remaining = sim_time_remaining;
moved_vec_n = obj->pos - start_pos; // chrishack -- use this copy
if (moved_vec_n != Zero_vector) {
actual_dist = vm_NormalizeVector(&moved_vec_n);
} else {
actual_dist = 0.0f;
}
// chrishack -- potentially bad -- outside to inside stuff
// We where sitting in a wall -- invalid starting point
// moved backwards
if (fate == HIT_WALL && moved_vec_n * movement_vec < -0.000001 && actual_dist != 0.0) {
LOG_WARNING.printf("Obj %d Walked backwards!", OBJNUM(obj));
/*
mprintf(0, "PHYSICS NOTE: (%f, %f, %f) to (%f, %f, %f)\n",
XYZ(&start_pos),
XYZ(&obj->pos))); // don't change position or sim_time_remaining
*/
ObjSetPos(obj, &start_pos, start_room, NULL, false);
moved_time = 0.0;
} else {
// Compute more results of this simulation
attempted_dist = vm_GetMagnitude(&movement_vec);
sim_time_remaining = sim_time_remaining * ((attempted_dist - actual_dist) / attempted_dist);
moved_time = old_sim_time_remaining - sim_time_remaining;
// chrishack -- we have no time left (plus some) This can happen if FVI corrects a near tangental
// movement by adding the radius - thus, we move a little too far.
if (sim_time_remaining < 0.0) {
sim_time_remaining = 0.0;
moved_time = old_sim_time_remaining;
}
// chrishack -- negative simulation time pasted for this sim frame
if (sim_time_remaining > old_sim_time_remaining) {
LOG_WARNING.printf(
"Bogus sim_time_remaining = %15.13f, old = %15.13f; Attempted d = %15.13f, actual = %15.13f",
sim_time_remaining, old_sim_time_remaining, attempted_dist, actual_dist);
// Int3();
sim_time_remaining = old_sim_time_remaining;
moved_time = 0.0;
f_continue_sim = false;
}
}
}
// Get the collision speed as a linear interp.
if (old_sim_time_remaining > 0.0) {
obj->mtype.phys_info.velocity = obj->mtype.phys_info.velocity * (moved_time / old_sim_time_remaining) +
start_vel * (sim_time_remaining / old_sim_time_remaining);
}
// Collision response code
switch (fate) {
case HIT_NONE:
f_continue_sim = false;
break;
case HIT_WALL: // Finally unified, still needs some work, but it certainly better like this :)
case HIT_TERRAIN: {
// if(obj->type != OBJ_CLUTTER)
{
vector moved_v;
float hit_speed, wall_part;
float hit_dot = 1.0;
float luke_test;
if (obj->type == OBJ_PLAYER || OBJ_CLUTTER) {
luke_test = vm_GetMagnitude(&obj->mtype.phys_info.velocity);
}
// Find hit speed
moved_v = obj->pos - start_pos; // chrishack -- We already computed this!!!!!!!
wall_part = moved_v * hit_info.hit_wallnorm[0];
if (obj->mtype.phys_info.hit_die_dot > 0.0) {
vector m_normal = start_pos - obj->pos;
vm_NormalizeVector(&m_normal);
hit_dot = m_normal * hit_info.hit_wallnorm[0];
}
hit_speed = -(wall_part / moved_time);
// We hit a wall (weapons cannot scrap)
if ((wall_part != 0.0 && moved_time > 0.0 && (hit_speed > 0.0)) || obj->type == OBJ_WEAPON)
collide_object_with_wall(obj, hit_speed, hit_info.hit_face_room[0], hit_info.hit_face[0],
&hit_info.hit_face_pnt[0], &hit_info.hit_wallnorm[0], hit_dot);
else // We hit a wall and are moving parallel to it
collide_object_with_wall(obj, hit_speed, hit_info.hit_face_room[0], hit_info.hit_face[0],
&hit_info.hit_face_pnt[0], &hit_info.hit_wallnorm[0], hit_dot);
if (!(obj->flags & OF_DEAD)) {
bool f_forcefield = false; // bounce off a forcefield
if (obj->type == OBJ_WEAPON && (obj->mtype.phys_info.flags & PF_BOUNCE))
obj->mtype.phys_info.flags &= (~PF_NO_COLLIDE_PARENT);
// Slide object along wall
// We're constrained by wall, so subtract wall part from the velocity vector
wall_part = hit_info.hit_wallnorm[0] * obj->mtype.phys_info.velocity;
if ((obj->mtype.phys_info.num_bounces <= 0) && (obj->mtype.phys_info.flags & PF_STICK)) {
obj->movement_type = MT_NONE;
vm_MakeZero(&obj->mtype.phys_info.velocity);
obj->last_pos = init_pos;
goto end_of_sim;
} else if (f_forcefield || (obj->mtype.phys_info.flags & PF_BOUNCE)) {
wall_part *= 2.0; // Subtract out wall part twice to achieve bounce
if (f_forcefield) {
if (obj->type == OBJ_PLAYER)
wall_part *= 2; // player bounce twice as much -- chrishack try without this too.
}
bounced = 1; // this object bounced
// mprintf(0, "(%f, %f, %f) before bounce\n", XYZ(&obj->mtype.phys_info.velocity));
obj->mtype.phys_info.velocity += hit_info.hit_wallnorm[0] * (wall_part * -1.0f);
if (obj->mtype.phys_info.coeff_restitution != 1.0f)
obj->mtype.phys_info.velocity -=
(obj->mtype.phys_info.velocity * (1.0f - obj->mtype.phys_info.coeff_restitution));
// mprintf(0, "(%f, %f, %f) after bounce\n", XYZ(&obj->mtype.phys_info.velocity));
// mprintf(0, "p (%f, %f, %f) after bounce\n", XYZ(&obj->pos));
} else {
float wall_force;
wall_force = total_force * hit_info.hit_wallnorm[0];
total_force +=
hit_info.hit_wallnorm[0] * (wall_force * -1.001f); // 1.001 so that we are not quite tangential
// Update velocity from wall hit.
obj->mtype.phys_info.velocity +=
hit_info.hit_wallnorm[0] * (wall_part * -1.001f); // 1.001 so that we are not quite tangential
if ((obj->type == OBJ_ROBOT || obj->type == OBJ_PLAYER || OBJ_CLUTTER ||
(obj->type == OBJ_BUILDING && obj->ai_info)) &&
sim_time_remaining == old_sim_time_remaining) {
obj->mtype.phys_info.velocity += hit_info.hit_wallnorm[0];
}
if (obj->type == OBJ_PLAYER || OBJ_CLUTTER) {
float real_vel;
real_vel = vm_NormalizeVector(&obj->mtype.phys_info.velocity);
obj->mtype.phys_info.velocity *= ((real_vel + luke_test) / 2);
}
}
// mprintf(0, "PHYSICS: Wall normal (%f, %f, %f)\n", XYZ(&hit_info.hit_wallnorm[0]));
// mprintf(0, "PHYSICS: Bounded velocity (%f, %f, %f)\n", XYZ(&obj->mtype.phys_info.velocity));
// This only happens if the new velocity is set from hitting a forcefield.
if (!(fabs(obj->mtype.phys_info.velocity.x) < MAX_OBJECT_VEL &&
fabs(obj->mtype.phys_info.velocity.y) < MAX_OBJECT_VEL &&
fabs(obj->mtype.phys_info.velocity.z) < MAX_OBJECT_VEL)) {
float mag = vm_NormalizeVector(&obj->mtype.phys_info.velocity);
LOG_WARNING.printf("Bashing vel for Obj %d of type %d with %f velocity", objnum, obj->type, mag);
obj->mtype.phys_info.velocity *= MAX_OBJECT_VEL * 0.1f;
}
// Weapons should face their new heading. This is so missiles are pointing in the correct direct.
if (obj->type == OBJ_WEAPON && (bounced || (obj->mtype.phys_info.flags & (PF_GRAVITY | PF_WIND))))
if (obj->mtype.phys_info.velocity != Zero_vector)
vm_VectorToMatrix(&obj->orient, &obj->mtype.phys_info.velocity, &obj->orient.uvec, NULL);
}
}
f_continue_sim = true;
} break;
case HIT_OBJECT:
case HIT_SPHERE_2_POLY_OBJECT: {
vector old_force; // -- chrishack
// Mark the hit object so that on the following sim frames, in this game frame, ignore this object.
ASSERT(hit_info.hit_object[0] != -1); // chrishack move this ASSERT fvi stuff above
// chrishack -- we should have this point from FVI!!!!!!!!!!!
// Calculcate the hit point between the two objects.
old_force = obj->mtype.phys_info.thrust;
obj->mtype.phys_info.thrust = total_force;
// hit_info.hit_wallnorm[0] *= -1.0f;
collide_two_objects(obj, &Objects[hit_info.hit_object[0]], &hit_info.hit_face_pnt[0], &hit_info.hit_wallnorm[0],
&hit_info);
if (obj->movement_type == MT_OBJ_LINKED)
goto end_of_sim;
total_force = obj->mtype.phys_info.thrust;
obj->mtype.phys_info.thrust = old_force;
if ((obj->type == OBJ_ROBOT || obj->type == OBJ_PLAYER || OBJ_CLUTTER ||
(obj->type == OBJ_BUILDING && obj->ai_info)) &&
sim_time_remaining == old_sim_time_remaining && Objects[hit_info.hit_object[0]].movement_type == MT_NONE) {
obj->mtype.phys_info.velocity += hit_info.hit_wallnorm[0];
}
// mprintf(0, "OBJ %d t %d hit %d\n", OBJNUM(obj), obj->type, hit_info.hit_object[0]);
// Let object continue its movement if collide_two_objects does not mark it as dead
if (!(obj->flags & OF_DEAD)) {
if ((obj->mtype.phys_info.flags & PF_PERSISTENT) ||
(Objects[hit_info.hit_object[0]].mtype.phys_info.flags & PF_PERSISTENT)) {
if (n_ignore_objs < MAX_IGNORE_OBJS)
ignore_obj_list[n_ignore_objs++] = hit_info.hit_object[0];
} else if (Objects[hit_info.hit_object[0]].type == OBJ_POWERUP || obj->type == OBJ_POWERUP ||
Objects[hit_info.hit_object[0]].type == OBJ_MARKER || obj->type == OBJ_MARKER) {
if (n_ignore_objs < MAX_IGNORE_OBJS)
ignore_obj_list[n_ignore_objs++] = hit_info.hit_object[0];
count--;
if (count < -1)
count = -1;
}
f_continue_sim = true;
} else {
f_continue_sim = false;
}
} break;
case HIT_BAD_P0:
LOG_ERROR << "Bad p0 in physics!!!";
Int3(); // Unexpected collision type: start point not in specified segment.
break;
default:
LOG_ERROR << "Unknown and unhandled hit type returned from FVI";
Int3();
break;
}
// Increment the simulation loop counter
count++;
} while ((f_continue_sim) && (!(obj->flags & OF_DEAD)) && (sim_time_remaining > 0.0f) && (count < sim_loop_limit));
// Special stuff should we do if we hit the simulation loop limit
// If retry count is getting large, then we might be trying to do something bad.
// NOTE: These numbers limit the max collisions an object can have in a single frame
if (count >= sim_loop_limit) {
if (obj->type == OBJ_PLAYER) {
LOG_WARNING << "PHYSICS NOTE: Too many collisions for player!";
}
}
end_of_sim:
AttachUpdateSubObjects(obj);
ASSERT(std::isfinite(obj->mtype.phys_info.velocity.x)); // Caller wants to go to infinity! -- Not FVI's fault.
ASSERT(std::isfinite(obj->mtype.phys_info.velocity.y)); // Caller wants to go to infinity! -- Not FVI's fault.
ASSERT(std::isfinite(obj->mtype.phys_info.velocity.z)); // Caller wants to go to infinity! -- Not FVI's fault.
obj->last_pos = init_pos;
return;
}
// -----------------------------------------------------------------------------------------------------------
// Simulate a physics object for this frame
void do_vis_physics_sim(vis_effect *vis) {
if (Frametime <= 0.0f)
return;
vector total_force;
vector old_pos = vis->pos;
#ifdef _DEBUG
if (!Game_do_vis_sim) {
return;
}
#endif
if (vis->flags & VF_DEAD) {
return;
}
if (fabsf(vis->velocity.x) < 0.000001f && fabsf(vis->velocity.y) < 0.000001f && fabsf(vis->velocity.z) < 0.000001f &&
!(vis->phys_flags & PF_GRAVITY)) {
return;
}
// Determine velocity
if (vis->phys_flags & PF_FIXED_VELOCITY) {
vis->pos += vis->velocity * Frametime;
} else {
if (vis->mass > 0.0f && vis->drag > 0.0f) {
// If the object is effected by gravity (normal, lighter than air, and anti-gravity)
if (vis->phys_flags & PF_GRAVITY) {
total_force.x = total_force.z = 0.0f;
total_force.y = Gravity_strength * vis->mass;
} else if (vis->phys_flags & PF_REVERSE_GRAVITY) {
total_force.x = total_force.z = 0.0f;
total_force.y = -Gravity_strength * vis->mass;
} else {
total_force.x = total_force.y = total_force.z = 0.0f;
}
// Note: The math here is done in 64bit floats because we will run into precision problems with 32bit
const double forceOverDrag[3] = {total_force.x / vis->drag, total_force.y / vis->drag, total_force.z / vis->drag};
const double frameTime = Frametime;
const double massOverDrag = vis->mass / vis->drag;
const double dragOverMass = vis->drag / vis->mass;
const double expDoMFt = exp(-dragOverMass * frameTime);
double visNewPos[3];
visNewPos[0] = double(vis->pos.x) + forceOverDrag[0] * frameTime +
massOverDrag * (double(vis->velocity.x) - forceOverDrag[0]) * (1.0 - expDoMFt);
visNewPos[1] = double(vis->pos.y) + forceOverDrag[1] * frameTime +
massOverDrag * (double(vis->velocity.y) - forceOverDrag[1]) * (1.0 - expDoMFt);
visNewPos[2] = double(vis->pos.z) + forceOverDrag[2] * frameTime +
massOverDrag * (double(vis->velocity.z) - forceOverDrag[2]) * (1.0 - expDoMFt);
double visNewVel[3];
visNewVel[0] = (double(vis->velocity.x) - forceOverDrag[0]) * expDoMFt + forceOverDrag[0];
visNewVel[1] = (double(vis->velocity.y) - forceOverDrag[1]) * expDoMFt + forceOverDrag[1];
visNewVel[2] = (double(vis->velocity.z) - forceOverDrag[2]) * expDoMFt + forceOverDrag[2];
vis->pos.x = float(visNewPos[0]);
vis->pos.y = float(visNewPos[1]);
vis->pos.z = float(visNewPos[2]);
vis->velocity.x = float(visNewVel[0]);
vis->velocity.y = float(visNewVel[1]);
vis->velocity.z = float(visNewVel[2]);
} else {
vector delta_velocity = {0.0f, 0.0f, 0.0f};
if (vis->phys_flags & PF_GRAVITY) {
delta_velocity.y += Gravity_strength * Frametime;
} else if (vis->phys_flags & PF_REVERSE_GRAVITY) {
delta_velocity.y -= Gravity_strength * Frametime;
}
vis->pos += (vis->velocity * Frametime) + (0.5f * delta_velocity * Frametime);
vis->velocity += delta_velocity;
}
}
if (vis->phys_flags & PF_NO_COLLIDE) {
return;
}
Physics_vis_counter++;
// Do FVI call to check for death & update room
fvi_query fq;
fvi_info hit_info;
int fate;
if (ROOMNUM_OUTSIDE(vis->roomnum)) {
ASSERT(CELLNUM(vis->roomnum) <= TERRAIN_WIDTH * TERRAIN_DEPTH);
ASSERT(CELLNUM(vis->roomnum) >= 0);
} else {
ASSERT(vis->roomnum >= 0 && vis->roomnum <= Highest_room_index && Rooms[vis->roomnum].used);
}
fq.p0 = &old_pos;
fq.startroom = vis->roomnum;
fq.p1 = &vis->pos;
fq.rad = 0.0f;
fq.thisobjnum = -1;
fq.ignore_obj_list = NULL;
fq.flags = FQ_CHECK_OBJS | FQ_ONLY_DOOR_OBJ | FQ_IGNORE_WALLS;
fate = fvi_FindIntersection(&fq, &hit_info);
if (fate == HIT_NONE && hit_info.hit_room != -1) {
if (hit_info.hit_room != vis->roomnum) {
VisEffectRelink(vis - VisEffects, hit_info.hit_room);
}
if (ROOMNUM_OUTSIDE(hit_info.hit_room)) {
ASSERT(CELLNUM(hit_info.hit_room) <= TERRAIN_WIDTH * TERRAIN_DEPTH);
ASSERT(CELLNUM(hit_info.hit_room) >= 0);
} else {
ASSERT(hit_info.hit_room >= 0 && hit_info.hit_room <= Highest_room_index && Rooms[hit_info.hit_room].used);
}
} else {
VisEffectDelete(vis - VisEffects);
}
}
void phys_apply_force(object *obj, vector *force_vec, int16_t weapon_index) {
if (obj->mtype.phys_info.mass == 0.0)
return;
if (obj->movement_type != MT_PHYSICS && obj->movement_type != MT_WALKING)
return;
if (obj->mtype.phys_info.flags & PF_LOCK_MASK) // Not done!
return;
if ((Game_mode & GM_MULTI) &&
((obj->type == OBJ_PLAYER && obj->id != Player_num) ||
((obj->type != OBJ_PLAYER && obj->type != OBJ_POWERUP) && Netgame.local_role != LR_SERVER)))
return;
// Do Force Feedback for the hit
if (obj->id == Player_num) {
// we need to convert collision_normal from world space to local space
vector local_norm;
float scale = 0, magnitude = 0;
// compute how much force to do
magnitude = vm_GetMagnitude(force_vec);
if (magnitude) {
scale = magnitude / 2500.0f;
if (scale < 0.0f)
scale = 0.0f;
if (scale > 1.0f)
scale = 1.0f;
vm_MatrixMulVector(&local_norm, force_vec, &obj->orient);
local_norm *= -1.0f;
ForceEffectsPlay(FORCE_TEST_FORCE, &scale, &local_norm);
}
LOG_DEBUG_IF(weapon_index != -1) << "Force from weapon";
// mprintf(0,"Force: Magnitude = %f Scale = %1.3f\n",magnitude,scale);
}
//------------------------------
// Add in acceleration due to force
obj->mtype.phys_info.velocity += (*force_vec / obj->mtype.phys_info.mass);
}
void phys_apply_rot(object *obj, vector *force_vec) {}