Descent3/legacy/editor/rad_hemicube.cpp
2024-05-24 20:57:17 -04:00

1011 lines
21 KiB
C++

/*
* Descent 3
* Copyright (C) 2024 Parallax Software
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// rad_scan
#include "vecmat.h"
#include "3d.h"
#include "radiosity.h"
#include "hemicube.h"
#include "gr.h"
#include "d3edit.h"
#include "ddio.h"
#include "mem.h"
#include <stdlib.h>
#define TOP_FACE 0
#define LEFT_FACE 1
#define RIGHT_FACE 2
#define FRONT_FACE 3
#define BACK_FACE 4
float Hemicube_view_zoom=1.0;
int rad_Drawing=0;
g3Point Element_points[100];
rad_element *rad_MaxElement;
rad_hemicube rad_Hemicube;
extern void ShowRadView();
int Show_rad_progress=0;
int Cracks_this_frame,Cracks_this_side;
float Highest_top_delta,Highest_side_delta;
#define PI 3.141592654
// Calculates delta form factors
void CalculateDeltaFormFactors ()
{
int i, j; // Loop indices
float da; // Cell area
float dx, dy, dz; // Cell dimensions
float r, x, y, z; // Cell co-ordinates
float val;
// Initialize cell dimensions and area
Highest_top_delta=-1.0f;
Highest_side_delta=-1.0f;
dx = dy = dz = 2.0 / (float) rad_Hemicube.ff_res;
da = 4.0 / ((float) rad_Hemicube.ff_res * (float) rad_Hemicube.ff_res);
// Calculate top face delta form factors
x = dx / 2.0;
for (i = 0; i < rad_Hemicube.grid_dim; i++)
{
y = dy / 2.0;
for (j = 0; j < rad_Hemicube.grid_dim; j++)
{
r = x * x + y * y + 1.0;
val=(float) (da / (PI * r * r));
rad_Hemicube.top_array[j*rad_Hemicube.grid_dim+i] = val;
if (val>Highest_top_delta)
Highest_top_delta=val;
y += dy;
}
x += dx;
}
// Calculate side face delta form factors
x = dx / 2.0;
for (i = 0; i < rad_Hemicube.grid_dim; i++)
{
z = dz / 2.0;
for (j = 0; j < rad_Hemicube.grid_dim; j++)
{
r = x * x + z * z + 1.0;
val=(float) (z * da / (PI * r * r));
rad_Hemicube.side_array[j*rad_Hemicube.grid_dim+i] = val;
if (val>Highest_side_delta)
Highest_side_delta=val;
z += dz;
}
x += dx;
}
}
// Calculates the form factors for a hemicube
void CalculateFormFactorsHemiCube ()
{
g3Point *pointlist[100];
int i,t,k,j,en_limit,en;
int ff_index=0;
int self;
rad_element *dest_element;
for (i=0;i<rad_NumElements;i++)
rad_FormFactors[i]=0.0f;
// Shoot from patch (faster) or element?
if (Shoot_from_patch)
en_limit=1;
else
en_limit=rad_MaxSurface->xresolution*rad_MaxSurface->yresolution;
for (en=0;en<en_limit;en++)
{
if (Shoot_from_patch)
{
SetSurfaceView (rad_MaxSurface);
}
else
{
rad_MaxElement=&rad_MaxSurface->elements[en];
if (rad_MaxElement->flags & EF_IGNORE)
continue;
SetElementView (rad_MaxElement);
}
Cracks_this_frame=0;
for (i=0;i<5;i++)
{
ClearHemicubeGrid();
UpdateView (i);
StartHemicubeDrawing ();
ff_index=0;
for (t=0;t<rad_NumSurfaces;t++)
{
int ignore=0;
rad_surface *surf=&rad_Surfaces[t];
if (surf==rad_MaxSurface)
ignore=1;
if (surf->surface_type==ST_PORTAL)
ignore=1;
for (j=0;j<surf->xresolution*surf->yresolution;j++,ff_index++)
{
if (ignore)
continue;
rad_element *ep=&surf->elements[j];
if (ep->flags & EF_IGNORE)
continue;
for (k=0;k<ep->num_verts;k++)
{
vector vec=ep->verts[k];
g3_RotatePoint(&Element_points[k],&vec);
Element_points[k].p3_flags =0;
}
if (g3_CheckNormalFacing(&ep->verts[0],&surf->normal))
{
for (k=0;k<ep->num_verts;k++)
{
g3Point *p = &Element_points[k];
pointlist[k] = p;
}
DrawRadiosityPoly (ep->num_verts,pointlist,ff_index);
}
}
}
SumDeltas(rad_FormFactors, i);
EndHemicubeDrawing(i);
}
}
// Now extract the results
for (ff_index=0,i=0;i<rad_NumSurfaces;i++)
{
rad_surface *surf=&rad_Surfaces[i];
// Check for self surface
if (rad_MaxSurface==surf)
self=1;
else
self=0;
for (t=0;t<surf->xresolution*surf->yresolution;t++,ff_index++)
{
if (self)
continue;
dest_element=&surf->elements[t];
if (rad_FormFactors[ff_index]>0.0)
{
spectra delta;
float reflect_factor=surf->reflectivity;
// Compute reciprocal form factor
float rff;
if (rad_MaxSurface->surface_type==ST_SATELLITE)
rff= min (rad_FormFactors[ff_index],1.0);
else
rff= (float) min(rad_FormFactors[ff_index] * rad_MaxSurface->area / dest_element->area,1.0);
// Get shooting patch unsent exitance
spectra shoot=rad_MaxSurface->exitance;
// Calculate delta exitance
delta.r=shoot.r*reflect_factor * rff;
delta.g=shoot.g*reflect_factor * rff;
delta.b=shoot.b*reflect_factor * rff;
// Update element exitance
dest_element->exitance.r+=delta.r;
dest_element->exitance.g+=delta.g;
dest_element->exitance.b+=delta.b;
// Update patch unsent exitance
surf->exitance.r+=((dest_element->area/surf->area)*delta.r);
surf->exitance.g+=((dest_element->area/surf->area)*delta.g);
surf->exitance.b+=((dest_element->area/surf->area)*delta.b);
}
}
}
}
void InitHemicube (int resolution)
{
// Make sure resolution is even
ASSERT (resolution%2==0);
rad_Drawing=1;
rad_Hemicube.ff_res=resolution;
rad_Hemicube.grid_dim=resolution/2;
rad_Hemicube.id_grid=(int *)mem_malloc (rad_Hemicube.ff_res*rad_Hemicube.ff_res*sizeof(int));
ASSERT (rad_Hemicube.id_grid!=NULL);
rad_Hemicube.depth_grid=(float *)mem_malloc (rad_Hemicube.ff_res*rad_Hemicube.ff_res*sizeof(float));
ASSERT (rad_Hemicube.depth_grid!=NULL);
rad_Hemicube.top_array=(float *)mem_malloc (rad_Hemicube.grid_dim*rad_Hemicube.grid_dim*sizeof(float));
ASSERT (rad_Hemicube.top_array!=NULL);
rad_Hemicube.side_array=(float *)mem_malloc (rad_Hemicube.grid_dim*rad_Hemicube.grid_dim*sizeof(float));
ASSERT (rad_Hemicube.side_array!=NULL);
CalculateDeltaFormFactors ();
// Get a surface to draw to
rad_Hemicube.drawing_surface.create(rad_Hemicube.ff_res, rad_Hemicube.ff_res, BPP_16);
rad_Hemicube.vport=new grViewport (&rad_Hemicube.drawing_surface);
}
void CloseHemicube ()
{
delete rad_Hemicube.vport;
rad_Hemicube.drawing_surface.free();
mem_free (rad_Hemicube.depth_grid);
mem_free (rad_Hemicube.id_grid);
mem_free (rad_Hemicube.side_array);
mem_free (rad_Hemicube.top_array);
rad_Drawing=0;
}
void ClearHemicubeGrid ()
{
int i,t;
for (i=0;i<rad_Hemicube.ff_res;i++)
{
for (t=0;t<rad_Hemicube.ff_res;t++)
{
rad_Hemicube.depth_grid[i*rad_Hemicube.ff_res+t]=999999.0f;
rad_Hemicube.id_grid[i*rad_Hemicube.ff_res+t]=-1;
}
}
}
void SetElementView(rad_element *ep)
{
vector rv; // Random vector
vector u,v,n;
// Select random vector for hemicube orientation
rv.x=((rand()/RAND_MAX) * 2.0 - 1.0);
rv.y=((rand()/RAND_MAX) * 2.0 - 1.0);
rv.z=((rand()/RAND_MAX) * 2.0 - 1.0);
n = rad_MaxSurface->normal; // Get patch normal
do // Get valid u-axis vector
{
vm_CrossProduct(&u,&n, &rv);
}
while (vm_GetMagnitude (&u) < .0001);
vm_NormalizeVector (&u);
vm_CrossProduct (&v,&u,&n); // Determine v-axis
rad_Hemicube.head_matrix.rvec=u;
rad_Hemicube.head_matrix.uvec=v;
rad_Hemicube.head_matrix.fvec=n;
vm_VectorToMatrix(&rad_Hemicube.head_matrix,&n,NULL,NULL);
rad_Hemicube.shooting_element=ep;
}
void SetSurfaceView(rad_surface *surf)
{
vector rv; // Random vector
vector u,v,n;
// Select random vector for hemicube orientation
rv.x=((rand()/RAND_MAX) * 2.0 - 1.0);
rv.y=((rand()/RAND_MAX) * 2.0 - 1.0);
rv.z=((rand()/RAND_MAX) * 2.0 - 1.0);
n = rad_MaxSurface->normal; // Get patch normal
do // Get valid u-axis vector
{
vm_CrossProduct(&u,&n, &rv);
}
while (vm_GetMagnitude (&u) < .0001);
vm_NormalizeVector (&u);
vm_CrossProduct (&v,&u,&n); // Determine v-axis
rad_Hemicube.head_matrix.rvec=u;
rad_Hemicube.head_matrix.uvec=v;
rad_Hemicube.head_matrix.fvec=n;
vm_VectorToMatrix(&rad_Hemicube.head_matrix,&n,NULL,NULL);
rad_Hemicube.shooting_surface=surf;
}
// Build transformation matrix for our hemicube
void BuildTransform(vector *nu,vector *nv,vector *nn)
{
matrix *vm=&rad_Hemicube.view_matrix; // view matrix
if (Shoot_from_patch)
GetCenterOfSurface(rad_Hemicube.shooting_surface,&rad_Hemicube.view_position);
else
GetCenterOfElement(rad_Hemicube.shooting_element,&rad_Hemicube.view_position);
rad_Hemicube.view_position+=(rad_MaxSurface->normal/16.0);
vm->fvec=*nn;
vm->uvec=*nv;
vm->rvec=*nu;
}
void StartHemicubeDrawing ()
{
StartEditorFrame (rad_Hemicube.vport,&rad_Hemicube.view_position,&rad_Hemicube.view_matrix,Hemicube_view_zoom);
}
int surface_colors[9000];
void EndHemicubeDrawing (int face)
{
static int first=1;
EndEditorFrame();
mprintf_at(2,4,0,"CTF=%d ",Cracks_this_frame);
mprintf_at(2,5,0,"CTS=%d ",Cracks_this_side);
if (Show_rad_progress)
{
int i,t;
int key;
if (first)
{
for (i=0;i<9000;i++)
{
int r=(rand()%127)+128;
int g=(rand()%127)+128;
int b=(rand()%127)+128;
surface_colors[i]=GR_RGB(r,g,b);
}
first=0;
}
while ((key = ddio_KeyInKey())!= 0)
;
uint16_t surfval[90000];
int ff_index=0;
for (i=0;i<rad_NumSurfaces;i++)
{
rad_surface *surf=&rad_Surfaces[i];
for (t=0;t<surf->yresolution*surf->xresolution;t++,ff_index++)
{
surfval[ff_index]=i;
}
}
for (i=0;i<rad_Hemicube.ff_res;i++)
{
for (t=0;t<rad_Hemicube.ff_res;t++)
{
int element_num=rad_Hemicube.id_grid[i*rad_Hemicube.ff_res+t];
float factor;
if (face==TOP_FACE)
factor=GetTopFactor (i,t);
else
factor=GetSideFactor (i,t);
if (element_num==-1)
rad_Hemicube.id_grid[i*rad_Hemicube.ff_res+t]=-1;
else
{
int surfnum=surfval[element_num];
int color=surface_colors[surfnum];
float norm;
if (face==TOP_FACE)
norm=factor/Highest_top_delta;
else
norm=factor/Highest_side_delta;
int r=GR_COLOR_RED(color)*norm;
int g=GR_COLOR_GREEN(color)*norm;
int b=GR_COLOR_BLUE(color)*norm;
rad_Hemicube.id_grid[i*rad_Hemicube.ff_res+t]=GR_RGB(r,g,b);
}
}
}
ShowRadView();
while ((key = ddio_KeyInKey())== 0)
{
;
}
}
}
// Update hemicube view transformation matrix
void UpdateView( int face_id )
{
vector nu, nv, nn; // View space co-ordinates
switch (face_id ) // Exchange co-ordinates
{
case TOP_FACE:
nu = rad_Hemicube.head_matrix.rvec;
nv = rad_Hemicube.head_matrix.uvec;
nn = rad_Hemicube.head_matrix.fvec;
break;
case FRONT_FACE:
nu = rad_Hemicube.head_matrix.rvec;
nv = rad_Hemicube.head_matrix.fvec;
nn = rad_Hemicube.head_matrix.uvec * -1;
break;
case RIGHT_FACE:
nu = rad_Hemicube.head_matrix.uvec;
nv = rad_Hemicube.head_matrix.fvec;
nn = rad_Hemicube.head_matrix.rvec;
break;
case BACK_FACE:
nu = rad_Hemicube.head_matrix.rvec * -1;
nv = rad_Hemicube.head_matrix.fvec;
nn = (rad_Hemicube.head_matrix.uvec);
break;
case LEFT_FACE:
nu = (rad_Hemicube.head_matrix.uvec * -1);
nv = rad_Hemicube.head_matrix.fvec;
nn = (rad_Hemicube.head_matrix.rvec * -1);
break;
default:
Int3();
break;
}
// Build new view transformation matrix
BuildTransform(&nu, &nv, &nn);
}
void DrawRadiosityPoly(int nv,g3Point **pointlist,int id)
{
int i;
g3Codes cc;
bool was_clipped=0;
int triangulate=1;
ASSERT (id>=0 && id<=rad_NumElements);
if (triangulate)
{
if (nv > 3)
{
g3Point *tripoints[3];
tripoints[0] = pointlist[0];
tripoints[2] = pointlist[1];
for (i=0;i<nv-2;i++)
{
tripoints[1] = tripoints[2];
tripoints[2] = pointlist[2+i];
DrawRadiosityPoly(3,tripoints,id);
}
return;
}
}
//Initialize
cc.cc_or = 0; cc.cc_and = 0xff;
//Get codes for this polygon, and copy uvls into points
for (i=0;i<nv;i++)
{
uint8_t c;
c = pointlist[i]->p3_codes;
cc.cc_and &= c;
cc.cc_or |= c;
}
//All points off grid?
if (cc.cc_and)
return;
//One or more point off screen, so clip
if (cc.cc_or)
{
//Clip the polygon, getting pointer to new buffer
pointlist = g3_ClipPolygon(pointlist,&nv,&cc);
//Flag as clipped so temp points will be freed
was_clipped = 1;
//Check for polygon clipped away, or clip otherwise failed
if ((nv==0) || (cc.cc_or&CC_BEHIND) || cc.cc_and)
goto free_points;
}
//Make list of 2d coords
for (i=0;i<nv;i++)
{
g3Point *p = pointlist[i];
g3_ProjectPoint(p);
}
//Draw!
ScanRadiosityPoly(pointlist,nv,id);
free_points:;
//If was clipped, free temp points
if (was_clipped)
g3_FreeTempPoints(pointlist,nv);
}
/*void GetVertexOrdering (hemicube_point *t, int nv, int *vlt, int *vlb, int *vrt, int *vrb,int *bottom_y_ind)
{
int i;
float min_y,max_y;
int min_y_ind;
int original_vrt;
float min_x;
// Scan all vertices, set min_y_ind to vertex with smallest y coordinate.
min_y = t[0].sy;
max_y = min_y;
min_y_ind = 0;
min_x = t[0].sx;
*bottom_y_ind = 0;
for (i=1; i<nv; i++)
{
if (t[i].sy < min_y)
{
min_y = t[i].sy;
min_y_ind = i;
min_x = t[i].sx;
}
else if (t[i].sy == min_y)
{
if (t[i].sx < min_x)
{
min_y_ind = i;
min_x = t[i].sx;
}
}
if (t[i].sy > max_y)
{
max_y = t[i].sy;
*bottom_y_ind = i;
}
}
// Set "vertex left top", etc. based on vertex with topmost y coordinate
*vlt = min_y_ind;
*vrt = *vlt;
*vlb = PrevIndex(*vlt,nv);
*vrb = NextIndex(*vrt,nv);
// If right edge is horizontal, then advance along polygon bound until it no longer is or until all
// vertices have been examined.
// (Left edge cannot be horizontal, because *vlt is set to leftmost point with highest y coordinate.)
original_vrt = *vrt;
while (t[*vrt].sy == t[*vrb].sy)
{
if (NextIndex(*vrt,nv) == original_vrt)
break;
*vrt = NextIndex(*vrt,nv);
*vrb = NextIndex(*vrt,nv);
}
}*/
void GetVertexOrdering (hemicube_point *t, int nv, int *vlt, int *vlb, int *vrt, int *vrb,float *top_y,float *bottom_y,int *left_edge_dir)
{
int i;
float min_y,max_y;
int min_index_l,min_index_r,max_index;
// Scan all vertices, set min_y_ind to vertex with smallest y coordinate.
*bottom_y = 0;
*top_y=0;
min_index_l = max_index = 0;
max_y = min_y = t[0].sy;
for (i = 1; i < nv; i++)
{
if (t[i].sy < min_y)
min_y = t[min_index_l = i].sy;
else if (t[i].sy > max_y)
max_y = t[max_index = i].sy;
}
if (min_y==max_y)
return;
// Scan in ascending order to find the last top-edge point */
min_index_r = min_index_l;
while (t[min_index_r].sy == min_y)
min_index_r=NextIndex(min_index_r,nv);
min_index_r=PrevIndex(min_index_r,nv);
// Now scan in descending order to find the first top-edge point
while (t[min_index_l].sy == min_y)
min_index_l=PrevIndex(min_index_l,nv);
min_index_l=NextIndex(min_index_l,nv);
*left_edge_dir= -1;
if (t[min_index_l].sx != t[min_index_r].sx)
{
// If the top is flat, just see which of the ends is leftmost
if (t[min_index_l].sx > t[min_index_r].sx)
{
*left_edge_dir = 1;
int temp = min_index_l;
min_index_l = min_index_r;
min_index_r = temp;
}
}
else
{
// Point to the downward end of the first line of each of the
// two edges down from the top
int next_index = min_index_r;
next_index=NextIndex(next_index,nv);
int prev_index = min_index_r;
prev_index=PrevIndex (prev_index,nv);
/* Calculate X and Y lengths from the top vertex to the end of
the first line down each edge; use those to compare slopes
and see which line is leftmost */
float deltaXN = t[next_index].sx - t[min_index_l].sx;
float deltaYN = t[next_index].sy - t[min_index_l].sy;
float deltaXP = t[prev_index].sx - t[min_index_l].sx;
float deltaYP = t[prev_index].sy - t[min_index_l].sy;
if (((deltaXN * deltaYP) - (deltaYN * deltaXP)) < 0)
{
*left_edge_dir = 1;
int temp = min_index_l;
min_index_l = min_index_r;
min_index_r = temp;
}
}
*bottom_y=max_y;
*top_y=min_y;
*vlt=min_index_l;
*vrt=min_index_r;
if (*left_edge_dir==-1)
{
*vlb=PrevIndex(min_index_l,nv);
*vrb=NextIndex(min_index_r,nv);
}
else
{
*vrb=PrevIndex(min_index_r,nv);
*vlb=NextIndex(min_index_l,nv);
}
}
// Returns number preceding val modulo modulus.
// prevmod(3,4) = 2
// prevmod(0,4) = 3
int PrevIndex(int val,int modulus)
{
if (val > 0)
return val-1;
else
return modulus-1;
}
// Returns number succeeding val modulo modulus.
// succmod(3,4) = 0
// succmod(0,4) = 1
int NextIndex(int val,int modulus)
{
if (val < modulus-1)
return val+1;
else
return 0;
}
void ScanRadiosityPoly (g3Point **pl,int nv,int element_id)
{
int i,left_edge_dir;
float Delta_right_x,Right_x,Delta_left_x,Left_x;
float Left_z,Right_z,Delta_left_z,Delta_right_z;
float height,left_height,right_height;
int vlt,vlb,vrt,vrb,desty;
float top_y,bottom_y,next_break_left,next_break_right,y;
hemicube_point cp[100];
int destptr;
ASSERT (element_id>=0 && element_id<=rad_NumElements);
for (i=0;i<nv;i++)
{
g3Point p;
p=*pl[i];
cp[i].sx=p.p3_sx;
cp[i].sy=p.p3_sy;
cp[i].z=1.0/(float)p.p3_vec.z;
}
// Determine top and bottom y coords.
GetVertexOrdering(cp,nv,&vlt,&vlb,&vrt,&vrb,&top_y,&bottom_y,&left_edge_dir);
height = bottom_y-top_y;
if(height < 1.0)
return;
#include "radscan_leftedge.h"
#include "radscan_rightedge.h"
// Set the destptr to equal the first row to draw to
destptr=((int)top_y*rad_Hemicube.ff_res);
desty=(int)top_y;
for (y=top_y;y<bottom_y;y++)
{
if (y>=next_break_left)
{
do
{
vlt = vlb;
if (left_edge_dir==-1)
vlb = PrevIndex(vlb,nv);
else
vlb = NextIndex(vlb,nv);
}
while (y == cp[vlb].sy);
#include "radscan_leftedge.h"
}
if (y>=next_break_right)
{
do
{
vrt = vrb;
if (left_edge_dir==-1)
vrb = NextIndex(vrb,nv);
else
vrb = PrevIndex(vrb,nv);
}
while (y == cp[vrb].sy);
#include "radscan_rightedge.h"
}
// Draw a scanline
float sl,sr;
float lz,rz;
sl=Left_x;
sr=Right_x;
lz=Left_z;
rz=Right_z;
int x1 = sl;
int width = (sr - x1)+1;
if (desty<0 || desty>=rad_Hemicube.ff_res)
goto UpdateExtents;
if (x1<0 || x1>=rad_Hemicube.ff_res)
goto UpdateExtents;
if ((x1+width)>rad_Hemicube.ff_res)
{
width=(rad_Hemicube.ff_res-x1);
}
if (width>0)
{
float z = lz;
float dz = (rz - z) / width;
// Enter scan line
for (int x = x1; x < x1+width; x++)
{
float realz=1.0/z;
// Check element visibility
if (realz <= rad_Hemicube.depth_grid[destptr+x])
{
// Update Z-buffer
rad_Hemicube.depth_grid[destptr+x]=realz;
// Set polygon identifier
rad_Hemicube.id_grid[destptr+x]=element_id;
}
// Update element pseudodepth
z += dz;
}
}
UpdateExtents:
destptr += rad_Hemicube.ff_res;
desty++;
Left_x += Delta_left_x;
Right_x += Delta_right_x;
Right_z +=Delta_right_z;
Left_z+=Delta_left_z;
}
}
float GetTopFactor( int row, int col )
{
if (row >= rad_Hemicube.grid_dim)
row -= rad_Hemicube.grid_dim;
else
row = rad_Hemicube.grid_dim - row - 1;
if (col >= rad_Hemicube.grid_dim)
col -= rad_Hemicube.grid_dim;
else
col = rad_Hemicube.grid_dim - col - 1;
return rad_Hemicube.top_array[row*rad_Hemicube.grid_dim+col];
}
// Get side face cell form factor
float GetSideFactor( int row, int col )
{
if (col >= rad_Hemicube.grid_dim)
col -= rad_Hemicube.grid_dim;
else
col = rad_Hemicube.grid_dim - col - 1;
if (row >= rad_Hemicube.grid_dim)
return 0.0f;
else
row = rad_Hemicube.grid_dim - row - 1;
return rad_Hemicube.side_array[(row*rad_Hemicube.grid_dim)+col];
}
// Sums the delta form factors
void SumDeltas (float *ff_array,int face_id)
{
int poly_id; // Polygon identifier
int row, col; // Face cell indices
Cracks_this_side=0;
if (face_id == TOP_FACE)
{
// Scan entire face buffer
for (row = 0; row < rad_Hemicube.ff_res; row++)
{
for (col = 0; col < rad_Hemicube.ff_res; col++)
{
poly_id = rad_Hemicube.id_grid[row*rad_Hemicube.ff_res+col];
if (poly_id !=-1)
{
if (Shoot_from_patch)
ff_array[poly_id] += (GetTopFactor(row, col));
else
ff_array[poly_id] += (GetTopFactor(row, col) * (rad_MaxElement->area/rad_MaxSurface->area));
}
else
{
Cracks_this_frame++;
Cracks_this_side++;
}
}
}
}
else
{
// Scan upper half of face buffer only
for (row = 0; row < rad_Hemicube.grid_dim; row++)
{
for (col = 0; col < rad_Hemicube.ff_res; col++)
{
poly_id = rad_Hemicube.id_grid[row*rad_Hemicube.ff_res+col];
if (poly_id !=-1)
{
if (Shoot_from_patch)
ff_array[poly_id] += GetSideFactor(row, col);
else
ff_array[poly_id] += (GetSideFactor(row, col) * (rad_MaxElement->area/rad_MaxSurface->area));
}
else
{
Cracks_this_frame++;
Cracks_this_side++;
}
}
}
}
}