Descent3/AudioEncode/aencode.cpp
Azamat H. Hackimov dd32f4e3ed Split libacm files to third_party/libacm and AudioEncode
Logically adecode/aencode belongs to AudioEncode.
2024-07-28 21:51:35 +03:00

1081 lines
32 KiB
C++

/*
* Descent 3
* Copyright (C) 2024 Parallax Software
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "aencode.h"
struct BitsEncoder {
FILE *m_outFile; // var50 | offset 0x10
uint32_t m_bitData; // var4C | offset 0x14
uint32_t m_bitCount; // var48 | offset 0x18
void WriteBits(int32_t val, uint32_t numBits) {
assert((numBits + m_bitCount) <= 32);
m_bitData |= static_cast<uint32_t>(val << m_bitCount);
m_bitCount += numBits;
while (m_bitCount >= 8) {
uint8_t v = m_bitData & 0xFF;
putc(v, m_outFile);
m_bitData >>= 8;
m_bitCount -= 8;
}
}
void Flush() {
while (m_bitCount >= 8) {
uint8_t v = m_bitData & 0xFF;
putc(v, m_outFile);
m_bitData >>= 8;
m_bitCount -= 8;
}
if (m_bitCount > 0) {
uint8_t v = m_bitData & 0xFF;
putc(v, m_outFile);
m_bitCount = 0;
m_bitData = 0;
}
}
};
struct Encoder {
ReadSampleFunction *m_reader; // var60 | offset 0x00
void *m_pReaderData; // var5C | offset 0x04
uint32_t m_sampleCount; // var58 | offset 0x08
float m_volume; // var54 | offset 0x0C
BitsEncoder m_bits; // var50 - var48 | offset 0x10 - 0x18
int8_t m_levels; // var44* | offset 0x1C
int8_t m_pad[3]; // 43, 42, 41
int32_t m_numColumns; // var40 | offset 0x20
int32_t m_samples_per_subband; // var3C | offset 0x24
int32_t m_samplesPerBlock; // var38 | offset 0x28
int32_t m_adjustedSamplesTimeNumColumns; // var34 | offset 0x2C
float **m_levelSlots; // var30 | offset 0x30
float *m_pCurrBlockData; // var2C | offset 0x34
int32_t m_blockSamplesRemaining; // var28 | offset 0x38
int32_t m_bandWriteEnabled; // var24 | offset 0x3C
int32_t m_finishedReading; // var20 | offset 0x40
int32_t m_someVal; // var1C | offset 0x44
float *m_lo_filter; // var18 | offset 0x48
float *m_hi_filter; // var14 | offset 0x4C
uint32_t *m_pFormatIdPerColumn; // var10 | offset 0x50
int32_t m_currBlockBitPower; // var0C | offset 0x54
int32_t m_currBlockBitValue; // var08 | offset 0x58
int32_t m_threshold; // var04 | offset 0x5C
};
typedef void (*WriteBandFunc)(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt0(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt3_16(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt17(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt18(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt19(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt20(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt21(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt22(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt23(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt24(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt26(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt27(Encoder &enc, int32_t colIndex, uint32_t packerId);
void WriteBand_Fmt29(Encoder &enc, int32_t colIndex, uint32_t packerId);
WriteBandFunc WriteBand_tbl[] = {WriteBand_Fmt0,
NULL,
NULL,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt3_16,
WriteBand_Fmt17,
WriteBand_Fmt18,
WriteBand_Fmt19,
WriteBand_Fmt20,
WriteBand_Fmt21,
WriteBand_Fmt22,
WriteBand_Fmt23,
WriteBand_Fmt24,
NULL,
WriteBand_Fmt26,
WriteBand_Fmt27,
NULL,
WriteBand_Fmt29,
NULL,
NULL};
float std_lo_filter[] = {
-0.0012475221f, -0.0024950907f, 0.0087309526f, 0.019957958f, -0.050528999f, -0.12055097f, 0.29304558f, 0.70617616f,
};
float std_hi_filter[] = {
0.0012475221f, -0.0024950907f, -0.0087309526f, 0.019957958f, 0.050528999f, -0.12055097f, -0.29304558f, 0.70617616f,
};
const float T911 = -32767.0f;
const float T913 = 32767.0f;
const float T1266 = 0.0f;
void WriteBand_Fmt0(Encoder &enc, int32_t colIndex, uint32_t formatId) {}
void WriteBand_Fmt3_16(Encoder &enc, int32_t colIndex, uint32_t formatId) {
const float currBlockValue = float(enc.m_currBlockBitValue);
const float halfCurrBlockValue = currBlockValue * 0.5f;
const int32_t minValue = (int32_t)ceilf(-32767.0f / currBlockValue);
const int32_t maxValue = (int32_t)floorf(32767.0f / currBlockValue);
float *pColumnData = &enc.m_levelSlots[enc.m_levels][colIndex];
for (int32_t i = 0; i < enc.m_samples_per_subband; ++i) {
int32_t val = (int32_t)floorf((*pColumnData + halfCurrBlockValue) / currBlockValue);
if (minValue > val) {
val = minValue;
} else if (val > maxValue) {
val = maxValue;
}
pColumnData += enc.m_numColumns;
enc.m_bits.WriteBits(val + (1 << (formatId - 1)), formatId);
}
}
void WriteBand_Fmt17(Encoder &enc, int32_t colIndex, uint32_t formatId) {
const float currBitValue = static_cast<float>(enc.m_currBlockBitValue);
const float halfCurrBitValue = currBitValue * 0.5f;
const int32_t minValue = (int32_t)ceilf(-32767.0f / currBitValue);
const int32_t maxValue = (int32_t)floorf(32767.0f / currBitValue);
const float *pCurrSample = &enc.m_levelSlots[enc.m_levels][colIndex];
int32_t currSampleIndex = enc.m_samples_per_subband;
while (currSampleIndex) {
--currSampleIndex;
int32_t val = (int32_t)floorf((*pCurrSample + halfCurrBitValue) / currBitValue);
if (minValue > val) {
val = minValue;
} else if (maxValue < val) {
val = maxValue;
}
pCurrSample += enc.m_numColumns;
if (val == 0) {
if (currSampleIndex != 0 && !(int)floorf((*pCurrSample + halfCurrBitValue) / currBitValue)) {
enc.m_bits.WriteBits(0, 1);
if (currSampleIndex == 0)
return;
--currSampleIndex;
pCurrSample += enc.m_numColumns;
continue;
}
enc.m_bits.WriteBits(1, 2);
continue;
}
enc.m_bits.WriteBits(3, 2);
enc.m_bits.WriteBits((val == 1) ? 1 : 0, 1);
}
}
void WriteBand_Fmt18(Encoder &enc, int32_t colIndex, uint32_t formatId) {
const float currBlockBitValue = static_cast<float>(enc.m_currBlockBitValue);
const float halfCurrBlockBitValue = enc.m_currBlockBitValue * 0.5f;
const int32_t minValue = (int32_t)ceilf(-32767.0f / currBlockBitValue);
const int32_t maxValue = (int32_t)floorf(32767.0f / currBlockBitValue);
const float *pCurrSample = &enc.m_levelSlots[enc.m_levels][colIndex];
int32_t currSampleIndex = enc.m_samples_per_subband;
while (currSampleIndex) {
--currSampleIndex;
int32_t val = (int32_t)floorf((*pCurrSample + halfCurrBlockBitValue) / currBlockBitValue);
if (minValue > val) {
val = minValue;
} else if (val > maxValue) {
val = maxValue;
}
pCurrSample += enc.m_numColumns;
if (!val) {
enc.m_bits.WriteBits(0, 1);
continue;
}
enc.m_bits.WriteBits(1, 1);
enc.m_bits.WriteBits((val == 1) ? 1 : 0, 1);
}
}
void WriteBand_Fmt19(Encoder &enc, int32_t colIndex, uint32_t formatId) {
const float currBlockBitValue = static_cast<float>(enc.m_currBlockBitValue);
const float halfCurrBlockBitValue = currBlockBitValue * 0.5f;
const int32_t minValue = (int32_t)ceilf(-32767.0f / currBlockBitValue);
const int32_t maxValue = (int32_t)floorf(32767.0f / currBlockBitValue);
const float *pCurrSample = &enc.m_levelSlots[enc.m_levels][colIndex];
int32_t currSampleIndex = enc.m_samples_per_subband;
while (currSampleIndex) {
--currSampleIndex;
int32_t workingVal = (int32_t)floorf((*pCurrSample + halfCurrBlockBitValue) / currBlockBitValue);
if (minValue > workingVal) {
workingVal = minValue;
} else if (maxValue < workingVal) {
workingVal = maxValue;
}
pCurrSample += enc.m_numColumns;
int32_t baseValue = workingVal + 1;
if (currSampleIndex) {
--currSampleIndex;
workingVal = (int32_t)floorf((*pCurrSample + halfCurrBlockBitValue) / currBlockBitValue);
if (minValue > workingVal) {
workingVal = minValue;
} else if (maxValue < workingVal) {
workingVal = maxValue;
}
pCurrSample += enc.m_numColumns;
} else {
workingVal = 0;
}
baseValue += workingVal * 3 + 3;
if (currSampleIndex) {
--currSampleIndex;
workingVal = (int32_t)floorf((*pCurrSample + halfCurrBlockBitValue) / currBlockBitValue);
if (minValue > workingVal) {
workingVal = minValue;
} else if (maxValue < workingVal) {
workingVal = maxValue;
}
pCurrSample += enc.m_numColumns;
} else {
workingVal = 0;
}
enc.m_bits.WriteBits(workingVal * 9 + 9 + baseValue, 5);
}
}
void WriteBand_Fmt20(Encoder &enc, int32_t colIndex, uint32_t formatId) {
const float currBlockValue = static_cast<float>(enc.m_currBlockBitValue);
const float halfCurrBlockValue = currBlockValue * 0.5f;
const int32_t minValue = (int32_t)ceilf(-32767.0f / currBlockValue);
const int32_t maxValue = (int32_t)floorf(32767.0f / currBlockValue);
const float *pCurrSample = &enc.m_levelSlots[enc.m_levels][colIndex];
int32_t currSampleIndex = enc.m_samples_per_subband;
while (currSampleIndex) {
--currSampleIndex;
int32_t val = (int32_t)floorf((*pCurrSample + halfCurrBlockValue) / currBlockValue);
if (minValue > val) {
val = minValue;
} else if (maxValue < val) {
val = maxValue;
}
pCurrSample += enc.m_numColumns;
if (val == 0) {
if (currSampleIndex != 0 && !(int32_t)floorf((*pCurrSample + halfCurrBlockValue) / currBlockValue)) {
enc.m_bits.WriteBits(0, 1);
if (currSampleIndex == 0)
return;
--currSampleIndex;
pCurrSample += enc.m_numColumns;
continue;
}
enc.m_bits.WriteBits(1, 2);
continue;
}
enc.m_bits.WriteBits(3, 2);
if (val < 0) {
val += 2;
} else {
++val;
}
enc.m_bits.WriteBits(val, 2);
}
}
void WriteBand_Fmt21(Encoder &enc, int32_t colIndex, uint32_t formatId) {
const float currBlockValue = static_cast<float>(enc.m_currBlockBitValue);
const float halfCurrBlockValue = currBlockValue * 0.5f;
const int32_t minValue = (int32_t)ceilf(-32767.0f / currBlockValue);
const int32_t maxValue = (int32_t)floorf(32767.0f / currBlockValue);
const float *pCurrSample = &enc.m_levelSlots[enc.m_levels][colIndex];
int32_t currSampleIndex = enc.m_samples_per_subband;
while (currSampleIndex) {
--currSampleIndex;
int32_t val = (int32_t)floorf((*pCurrSample + halfCurrBlockValue) / currBlockValue);
if (minValue > val) {
val = minValue;
} else if (maxValue < val) {
val = maxValue;
}
pCurrSample += enc.m_numColumns;
if (!val) {
enc.m_bits.WriteBits(0, 1);
continue;
}
enc.m_bits.WriteBits(1, 1);
if (val < 0) {
val += 2;
} else {
++val;
}
enc.m_bits.WriteBits(val, 2);
}
}
void WriteBand_Fmt22(Encoder &enc, int32_t colIndex, uint32_t formatId) {
const float currBlockValue = static_cast<float>(enc.m_currBlockBitValue);
const float halfCurrBlockValue = currBlockValue * 0.5f;
const int32_t minValue = (int32_t)ceilf(-32767.0f / currBlockValue);
const int32_t maxValue = (int32_t)floorf(32767.0f / currBlockValue);
const float *pCurrSample = &enc.m_levelSlots[enc.m_levels][colIndex];
int32_t currSampleIndex = enc.m_samples_per_subband;
while (currSampleIndex) {
--currSampleIndex;
int32_t workingVal = (int32_t)floorf((*pCurrSample + halfCurrBlockValue) / currBlockValue);
if (minValue > workingVal) {
workingVal = minValue;
} else if (maxValue < workingVal) {
workingVal = maxValue;
}
int32_t baseValue = workingVal + 2;
pCurrSample += enc.m_numColumns;
if (currSampleIndex) {
--currSampleIndex;
workingVal = (int32_t)floorf((*pCurrSample + halfCurrBlockValue) / currBlockValue);
if (minValue > workingVal) {
workingVal = minValue;
} else if (maxValue < workingVal) {
workingVal = maxValue;
}
pCurrSample += enc.m_numColumns;
} else {
workingVal = 0;
}
baseValue += workingVal * 5 + 10;
if (currSampleIndex) {
--currSampleIndex;
workingVal = (int32_t)floorf((*pCurrSample + halfCurrBlockValue) / currBlockValue);
if (minValue > workingVal) {
workingVal = minValue;
} else if (maxValue < workingVal) {
workingVal = maxValue;
}
pCurrSample += enc.m_numColumns;
} else {
workingVal = 0;
}
enc.m_bits.WriteBits(workingVal * 25 + 50 + baseValue, 7);
}
}
void WriteBand_Fmt23(Encoder &enc, int32_t colIndex, uint32_t formatId) {
const float currBlockValue = static_cast<float>(enc.m_currBlockBitValue);
const float halfCurrBlockValue = currBlockValue * 0.5f;
const int32_t minValue = (int32_t)ceilf(-32767.0f / currBlockValue);
const int32_t maxValue = (int32_t)floorf(32767.0f / currBlockValue);
const float *pCurrSample = &enc.m_levelSlots[enc.m_levels][colIndex];
int32_t currSampleIndex = enc.m_samples_per_subband;
while (currSampleIndex) {
--currSampleIndex;
int32_t val = (int32_t)floorf((*pCurrSample + halfCurrBlockValue) / currBlockValue);
if (minValue > val) {
val = minValue;
} else if (maxValue < val) {
val = maxValue;
}
pCurrSample += enc.m_numColumns;
if (!val) {
if (currSampleIndex != 0) {
if (!(int32_t)floorf((*pCurrSample + halfCurrBlockValue) / currBlockValue)) {
enc.m_bits.WriteBits(0, 1);
if (currSampleIndex == 0)
return;
--currSampleIndex;
pCurrSample += enc.m_numColumns;
continue;
}
}
enc.m_bits.WriteBits(1, 2);
continue;
}
enc.m_bits.WriteBits(3, 2);
if (val != -1 && val != 1) {
enc.m_bits.WriteBits(1, 1);
if (val < 0) {
val += 3;
}
enc.m_bits.WriteBits(val, 2);
continue;
}
enc.m_bits.WriteBits(0, 1);
enc.m_bits.WriteBits((val == 1) ? 1 : 0, 1);
}
}
void WriteBand_Fmt24(Encoder &enc, int32_t colIndex, uint32_t formatId) {
const float currBlockBitValue = static_cast<float>(enc.m_currBlockBitValue);
const float halfCurrBlockBitValue = currBlockBitValue * 0.5f;
const int32_t minValue = (int32_t)ceilf(-32767.0f / currBlockBitValue);
const int32_t maxValue = (int32_t)floorf(32767.0f / currBlockBitValue);
const float *pCurrSample = &enc.m_levelSlots[enc.m_levels][colIndex];
int32_t currSampleIndex = enc.m_samples_per_subband;
while (currSampleIndex) {
--currSampleIndex;
int32_t val = (int32_t)floorf((*pCurrSample + halfCurrBlockBitValue) / currBlockBitValue);
if (minValue > val) {
val = minValue;
} else if (maxValue < val) {
val = maxValue;
}
pCurrSample += enc.m_numColumns;
if (!val) {
enc.m_bits.WriteBits(0, 1);
continue;
}
enc.m_bits.WriteBits(1, 1);
if (val != -1 && val != 1) {
enc.m_bits.WriteBits(1, 1);
if (val < 0) {
val += 3;
}
enc.m_bits.WriteBits(val, 2);
continue;
}
enc.m_bits.WriteBits(0, 1);
enc.m_bits.WriteBits((val == 1) ? 1 : 0, 1);
}
}
void WriteBand_Fmt26(Encoder &enc, int32_t colIndex, uint32_t formatId) {
const float currBlockValue = static_cast<float>(enc.m_currBlockBitValue);
const float halfCurrBlockValue = currBlockValue * 0.5f;
const int32_t minValue = static_cast<int32_t>(ceilf(-32767.0f / currBlockValue));
const int32_t maxValue = static_cast<int32_t>(floorf(32767.0f / currBlockValue));
const float *pColumnData = &enc.m_levelSlots[enc.m_levels][colIndex];
int32_t currSampleIdx = enc.m_samples_per_subband;
while (currSampleIdx) {
--currSampleIdx;
int32_t val = (int32_t)floorf((*pColumnData + halfCurrBlockValue) / currBlockValue);
if (minValue > val) {
val = minValue;
} else if (maxValue < val) {
val = maxValue;
}
pColumnData += enc.m_numColumns;
if (!val) {
if (currSampleIdx) {
int32_t testVal = (int32_t)floorf((*pColumnData + halfCurrBlockValue) / currBlockValue);
if (!testVal) {
enc.m_bits.WriteBits(0, 1);
if (currSampleIdx == 0)
return;
--currSampleIdx;
pColumnData += enc.m_numColumns;
continue;
}
}
enc.m_bits.WriteBits(1, 2);
continue;
}
enc.m_bits.WriteBits(3, 2);
if (val >= 0) {
val += 3;
} else {
val += 4;
}
enc.m_bits.WriteBits(val, 3);
}
}
void WriteBand_Fmt27(Encoder &enc, int32_t colIndex, uint32_t formatId) {
const float currBlockValue = static_cast<float>(enc.m_currBlockBitValue);
const float halfCurrBlockValue = currBlockValue * 0.5f;
const int32_t minValue = (int32_t)ceilf(-32767.0f / currBlockValue);
const int32_t maxValue = (int32_t)floorf(32767.0f / currBlockValue);
const float *pCurrSample = &enc.m_levelSlots[enc.m_levels][colIndex];
int32_t currSampleIndex = enc.m_samples_per_subband;
while (currSampleIndex) {
--currSampleIndex;
int32_t val = (int32_t)floorf((*pCurrSample + halfCurrBlockValue) / currBlockValue);
if (val < minValue) {
val = minValue;
} else if (maxValue < val) {
val = maxValue;
}
pCurrSample += enc.m_numColumns;
if (!val) {
enc.m_bits.WriteBits(0, 1);
continue;
}
enc.m_bits.WriteBits(1, 1);
if (val < 0) {
val += 4;
} else {
val += 3;
}
enc.m_bits.WriteBits(val, 3);
}
}
void WriteBand_Fmt29(Encoder &enc, int32_t colIndex, uint32_t formatId) {
const float currBitValue = (float)enc.m_currBlockBitValue;
const float halfCurrBitValue = currBitValue * 0.5f;
const int32_t minValue = (int32_t)ceilf(-32767.0f / currBitValue);
const int32_t maxValue = (int32_t)floorf(32767.0f / currBitValue);
const float *pColumnData = &enc.m_levelSlots[enc.m_levels][colIndex];
int32_t currSampleIndex = enc.m_samples_per_subband;
while (currSampleIndex) {
--currSampleIndex;
int32_t val = (int32_t)floorf((*pColumnData + halfCurrBitValue) / currBitValue);
if (minValue > val) {
val = minValue;
} else if (maxValue < val) {
val = maxValue;
}
int32_t baseValue = val + 5;
pColumnData += enc.m_numColumns;
if (currSampleIndex != 0) {
--currSampleIndex;
val = (int32_t)floorf((*pColumnData + halfCurrBitValue) / currBitValue);
if (minValue > val) {
val = minValue;
} else if (maxValue < val) {
val = maxValue;
}
pColumnData += enc.m_numColumns;
} else {
val = 0;
}
enc.m_bits.WriteBits(11 * val + 55 + baseValue, 7);
}
}
int ReadSample_init(Encoder &enc, ReadSampleFunction *read, void *data) {
enc.m_reader = read;
enc.m_pReaderData = data;
return 1;
}
int bits_init(BitsEncoder &bits, FILE *out) {
bits.m_outFile = out;
bits.m_bitData = 0;
bits.m_bitCount = 0;
return 1;
}
int SetupEncoder(Encoder &enc, int someVal, float std_lo_filter[], float std_hi_filter[], int8_t levels,
int samples_per_subband) {
enc.m_someVal = someVal;
enc.m_lo_filter = std_lo_filter;
enc.m_hi_filter = std_hi_filter;
enc.m_levels = levels;
enc.m_numColumns = 1 << levels;
enc.m_samples_per_subband = samples_per_subband;
enc.m_samplesPerBlock = samples_per_subband * enc.m_numColumns;
int adjustedSomeVal = (((someVal < -1) ? (someVal + 1) : (someVal)) + 1) >> 1;
enc.m_adjustedSamplesTimeNumColumns = adjustedSomeVal * (enc.m_numColumns - 1);
enc.m_levelSlots = reinterpret_cast<float **>(malloc(sizeof(float *) * (levels + 1)));
if (enc.m_levelSlots == NULL)
return 0;
if (levels >= 0) {
for (int8_t i = 0; i <= levels; ++i) {
int extraSamples = 0;
if (i != levels) {
extraSamples = (someVal - 1) << i;
}
float *blockData = reinterpret_cast<float *>(malloc((enc.m_samplesPerBlock + extraSamples) * sizeof(float)));
enc.m_levelSlots[i] = blockData;
if (blockData == NULL)
return 0;
memset(blockData, 0, (enc.m_samplesPerBlock + extraSamples) * sizeof(float));
enc.m_levelSlots[i] += extraSamples;
}
}
enc.m_pFormatIdPerColumn = reinterpret_cast<uint32_t *>(malloc(enc.m_numColumns * sizeof(uint32_t)));
if (enc.m_pFormatIdPerColumn == NULL)
return 0;
enc.m_sampleCount = 0;
int32_t edxOffset =
((enc.m_samplesPerBlock * sizeof(float) * 25) - enc.m_adjustedSamplesTimeNumColumns) % enc.m_samplesPerBlock;
enc.m_pCurrBlockData = enc.m_levelSlots[0] + edxOffset;
enc.m_blockSamplesRemaining = enc.m_samplesPerBlock - edxOffset;
enc.m_bandWriteEnabled = 0;
enc.m_finishedReading = 0;
return 1;
}
void DestroyEncoder(Encoder &enc) {
if (enc.m_levelSlots != NULL) {
for (int i = 0; i <= enc.m_levels; ++i) {
if (enc.m_levelSlots[i] != 0) {
int extraSamples = 0;
if (enc.m_levels != i) {
extraSamples = (enc.m_someVal - 1) << i;
}
free(enc.m_levelSlots[i] - extraSamples);
}
}
free(enc.m_levelSlots);
}
if (enc.m_pFormatIdPerColumn != NULL) {
free(enc.m_pFormatIdPerColumn);
}
}
void transform_subband(Encoder &enc, float *pD0, float *pD1, int32_t subBandCount, int32_t sampleCount) {
if (sampleCount <= 0)
return;
const int32_t var_8 = (enc.m_someVal - 1) >> 1;
const int32_t edx = var_8 * subBandCount;
pD0 -= edx;
for (int i = 0; i < sampleCount; ++i) {
float *pFilter = (i & 1) ? enc.m_hi_filter : enc.m_lo_filter;
float *ebx = pD0 - edx;
float *eax = pD0 + edx;
float var_4 = 0.0f;
if (var_8 > 0) {
for (int32_t ebp = var_8; ebp != 0; --ebp) {
var_4 += (*eax + *ebx) * *pFilter++;
ebx += subBandCount;
eax -= subBandCount;
}
}
*pD1 = (*ebx * *pFilter) + var_4;
pD1 += subBandCount;
pD0 += subBandCount;
}
}
void transform_all(Encoder &enc) {
if (enc.m_levels <= 0)
return;
int32_t subBandCount = 1;
int32_t sampleCount = enc.m_samplesPerBlock;
for (int i = 0; i < enc.m_levels; ++i) {
float *levelDataEBX = enc.m_levelSlots[i];
float *levelDataEBP = enc.m_levelSlots[i + 1];
for (int sbc = 0; sbc < subBandCount; ++sbc) {
transform_subband(enc, levelDataEBX++, levelDataEBP++, subBandCount, sampleCount);
}
subBandCount += subBandCount;
sampleCount >>= 1;
}
}
int32_t calc_bits(Encoder &enc, int32_t val) {
static uint32_t calc_bits_data[] = {0x00, 0x13, 0x16, 0x03, 0x1D, 0x00};
int32_t bitPower = 3;
int32_t result = enc.m_numColumns * 5 + 20;
float halfVal = float(val) * 0.5f;
float *var_18 = enc.m_levelSlots[enc.m_levels];
float *var_8 = enc.m_levelSlots[enc.m_levels];
for (int32_t var_1C = 0; var_1C < enc.m_numColumns; ++var_1C) {
int32_t minValue = 0x10000;
int32_t maxValue = -0x10000;
if (enc.m_samples_per_subband > 0) {
float *pSlotData = var_8;
for (int ebp = enc.m_samples_per_subband; ebp != 0; --ebp) {
int32_t testVal = (int32_t)floor((*pSlotData + halfVal) / float(val));
if (minValue > testVal) {
minValue = testVal;
}
if (maxValue < testVal) {
maxValue = testVal;
}
pSlotData += enc.m_numColumns;
}
}
int32_t absMaxVal = abs(minValue);
if (absMaxVal < maxValue) {
absMaxVal = maxValue;
} else if (absMaxVal < -maxValue) {
absMaxVal = -maxValue;
}
if (absMaxVal == 0) {
minValue = 0;
enc.m_pFormatIdPerColumn[var_1C] = 0;
} else if (absMaxVal <= 4) {
int32_t ebx = 1;
int32_t var_28 = absMaxVal * 3 + 14;
if (absMaxVal != 1) {
ebx = ((absMaxVal - 2) < 1) ? 2 : 3;
}
minValue = 0;
maxValue = 0;
for (int ebp = 0; ebp < enc.m_samples_per_subband; ++ebp) {
int32_t v = (int)floor((var_18[(ebp * enc.m_numColumns) + var_1C] + halfVal) / float(val));
if (v) {
if (ebx != 1) {
if (v == -1 || v == 1) {
minValue += 4;
maxValue += 3;
} else {
minValue += ebx + 2;
maxValue += ebx + 1;
}
} else {
minValue += 3;
maxValue += 2;
}
} else if ((enc.m_samples_per_subband - 1) <= ebp) {
minValue += 2;
++maxValue;
} else {
int32_t v = (int)floor((var_18[((ebp + 1) * enc.m_numColumns) + var_1C] + halfVal) / float(val));
if (v) {
minValue += 2;
++maxValue;
} else {
++minValue;
maxValue += 2;
++ebp;
}
}
}
if (minValue > maxValue) {
minValue = maxValue;
++var_28;
}
int32_t ecx;
if (absMaxVal != 4) {
ecx = ((enc.m_samples_per_subband + 2) / 3) * ((absMaxVal * 2) + 3);
} else {
ecx = (((enc.m_samples_per_subband < -1) ? (enc.m_samples_per_subband + 2) : (enc.m_samples_per_subband + 1)) >>
1) *
7;
}
if (minValue > ecx) {
minValue = ecx;
var_28 = calc_bits_data[absMaxVal];
}
enc.m_pFormatIdPerColumn[var_1C] = var_28;
} else if (minValue >= -5 && maxValue <= 5) {
minValue =
(((enc.m_samples_per_subband < -1) ? (enc.m_samples_per_subband + 2) : (enc.m_samples_per_subband + 1)) >>
1) *
7;
enc.m_pFormatIdPerColumn[var_1C] = 0x1D;
} else {
int32_t eax = 0;
if (minValue < 0) {
eax = ~minValue;
}
if (maxValue > 0 && ((uint32_t)(eax) < (uint32_t)(maxValue))) {
eax = maxValue;
}
minValue = 1;
while (eax) {
eax >>= 1;
++minValue;
}
if (bitPower < (minValue - 1)) {
bitPower = minValue - 1;
}
enc.m_pFormatIdPerColumn[var_1C] = minValue;
minValue *= enc.m_samples_per_subband;
}
result += minValue;
++var_8;
}
enc.m_currBlockBitPower = bitPower;
enc.m_currBlockBitValue = val;
return result;
}
void DetermineStep(Encoder &enc) {
int32_t lo = 1;
int32_t hi = 0x7FFF;
do {
const int32_t midPoint = (lo + hi) >> 1;
int32_t errorAmt = calc_bits(enc, midPoint);
if (enc.m_threshold < errorAmt) {
lo = midPoint + 1;
} else {
hi = midPoint - 1;
}
} while (hi >= lo);
if (enc.m_currBlockBitValue != lo) {
calc_bits(enc, lo);
}
}
void WriteBands(Encoder &enc) {
enc.m_bits.WriteBits(enc.m_currBlockBitPower, 4);
enc.m_bits.WriteBits(enc.m_currBlockBitValue, 16);
for (int i = 0; i < enc.m_numColumns; ++i) {
const uint32_t formatId = enc.m_pFormatIdPerColumn[i];
enc.m_bits.WriteBits(formatId, 5);
// int32_t currPos = ftell(enc.m_bits.m_outFile);
WriteBand_tbl[formatId](enc, i, formatId);
}
}
void shift_transform_levels(Encoder &enc) {
int32_t levelCount = enc.m_someVal - 1;
for (int i = 0; i < enc.m_levels; ++i, levelCount += levelCount) {
float *pDst = enc.m_levelSlots[i] - levelCount;
float *pSrc = pDst + enc.m_samplesPerBlock;
memcpy(pDst, pSrc, levelCount * sizeof(float));
}
}
void ProcessBlock(Encoder &enc) {
transform_all(enc);
if (enc.m_bandWriteEnabled != 0) {
DetermineStep(enc);
WriteBands(enc);
}
shift_transform_levels(enc);
enc.m_blockSamplesRemaining += enc.m_samplesPerBlock;
enc.m_pCurrBlockData -= enc.m_samplesPerBlock;
}
void EncodeSample(Encoder &enc) {
int32_t sample = 0;
if (enc.m_finishedReading == 0) {
sample = (*enc.m_reader)(enc.m_pReaderData);
if (sample == ReadSampleEof) {
enc.m_finishedReading = 1;
return;
}
++enc.m_sampleCount;
}
*enc.m_pCurrBlockData++ = enc.m_volume * float(sample);
if (--enc.m_blockSamplesRemaining == 0) {
ProcessBlock(enc);
}
}
void EncodeFlush(Encoder &enc) {
if (enc.m_samplesPerBlock == enc.m_blockSamplesRemaining) {
// no data in the block
return;
}
// Zero out the remaining data in the block
while (enc.m_blockSamplesRemaining != 0) {
*enc.m_pCurrBlockData++ = 0.0f;
--enc.m_blockSamplesRemaining;
}
// Send it off for processing
ProcessBlock(enc);
}
int32_t AudioEncode(ReadSampleFunction *read, void *data, unsigned channels, unsigned sample_rate, float volume,
FILE *out, int levels, int samples_per_subband, float comp_ratio) {
Encoder enc;
memset(&enc, 0, sizeof(enc));
if (!ReadSample_init(enc, read, data)) {
DestroyEncoder(enc);
return 0;
}
if (!bits_init(enc.m_bits, out)) {
DestroyEncoder(enc);
return 0;
}
enc.m_volume = volume;
if (!SetupEncoder(enc, 0xF, std_lo_filter, std_hi_filter, levels, samples_per_subband)) {
DestroyEncoder(enc);
return 0;
}
enc.m_threshold = (int32_t)(float(enc.m_samplesPerBlock) * comp_ratio * 16.0f);
int32_t originalPosVAR64 = ftell(out);
// Header
enc.m_bits.WriteBits(0x97, 8);
enc.m_bits.WriteBits(0x28, 8);
enc.m_bits.WriteBits(0x03, 8);
// Version
enc.m_bits.WriteBits(1, 8);
// Sample Count (Placeholder 32bits for now)
enc.m_bits.WriteBits(0, 8);
enc.m_bits.WriteBits(0, 8);
enc.m_bits.WriteBits(0, 8);
enc.m_bits.WriteBits(0, 8);
// Number of channels
enc.m_bits.WriteBits(channels, 16);
// Sample Rate
enc.m_bits.WriteBits(sample_rate, 16);
// Levels
enc.m_bits.WriteBits(levels, 4);
// Samples per Sub-band (rows)
enc.m_bits.WriteBits(samples_per_subband, 12);
enc.m_bandWriteEnabled = 0;
int32_t esi = enc.m_adjustedSamplesTimeNumColumns;
while (esi) {
EncodeSample(enc);
--esi;
}
enc.m_bandWriteEnabled = 1;
while (!enc.m_finishedReading) {
EncodeSample(enc);
}
esi = enc.m_adjustedSamplesTimeNumColumns;
while (esi) {
EncodeSample(enc);
--esi;
}
EncodeFlush(enc);
/////////////
// NOTE: The Interplay one doesn't do this ... but it should as there
// may be bits left in the bit processor that should go out
enc.m_bits.Flush();
/////////////
// Go back and write the Sample Count out proper
int32_t endPos = ftell(out);
fseek(out, originalPosVAR64 + 4, SEEK_SET);
putc((enc.m_sampleCount >> 0) & 0xFF, out);
putc((enc.m_sampleCount >> 8) & 0xFF, out);
putc((enc.m_sampleCount >> 16) & 0xFF, out);
putc((enc.m_sampleCount >> 24) & 0xFF, out);
fseek(out, endPos, SEEK_SET);
DestroyEncoder(enc);
return endPos;
}