mirror of
https://github.com/kevinbentley/Descent3.git
synced 2025-01-22 19:55:23 +00:00
254 lines
5.3 KiB
C
254 lines
5.3 KiB
C
/*
|
|
* $Logfile: /DescentIII/Main/lib/vecmat_external.h $
|
|
* $Revision: 3 $
|
|
* $Date: 2/19/99 4:26p $
|
|
* $Author: Jason $
|
|
*
|
|
* Contains any header information that can/should be exported to DLLs
|
|
*
|
|
* $Log: /DescentIII/Main/lib/vecmat_external.h $
|
|
*
|
|
* 3 2/19/99 4:26p Jason
|
|
* more work on Katmai support
|
|
*
|
|
* 2 1/21/99 11:15p Jeff
|
|
* pulled out some structs and defines from header files and moved them
|
|
* into seperate header files so that multiplayer dlls don't require major
|
|
* game headers, just those new headers. Side effect is a shorter build
|
|
* time. Also cleaned up some header file #includes that weren't needed.
|
|
* This affected polymodel.h, object.h, player.h, vecmat.h, room.h,
|
|
* manage.h and multi.h
|
|
*
|
|
* $NoKeywords: $
|
|
*/
|
|
|
|
#ifndef VECMAT_EXTERNAL_H
|
|
#define VECMAT_EXTERNAL_H
|
|
|
|
// Angles are unsigned shorts
|
|
typedef unsigned short angle; // make sure this matches up with fix.h
|
|
|
|
typedef struct {
|
|
angle p, h, b;
|
|
} angvec;
|
|
|
|
#define IDENTITY_MATRIX \
|
|
{ \
|
|
{1.0, 0, 0}, {0, 1.0, 0}, { 0, 0, 1.0 } \
|
|
}
|
|
|
|
typedef struct {
|
|
float x, y, z;
|
|
} vector;
|
|
|
|
typedef struct vector4 {
|
|
float x, y, z, kat_pad;
|
|
} vector4;
|
|
|
|
typedef struct {
|
|
float xyz[3];
|
|
} vector_array;
|
|
|
|
typedef struct {
|
|
vector rvec, uvec, fvec;
|
|
} matrix;
|
|
|
|
typedef struct {
|
|
vector4 rvec, uvec, fvec;
|
|
} matrix4;
|
|
|
|
// Zero's out a vector
|
|
inline void vm_MakeZero(vector *v) { v->x = v->y = v->z = 0; }
|
|
|
|
// Set an angvec to {0,0,0}
|
|
inline void vm_MakeZero(angvec *a) { a->p = a->h = a->b = 0; }
|
|
|
|
// Checks for equality
|
|
inline bool operator==(vector a, vector b) {
|
|
bool equality = false;
|
|
// Adds two vectors.
|
|
|
|
if (a.x == b.x && a.y == b.y && a.z == b.z)
|
|
equality = true;
|
|
|
|
return equality;
|
|
}
|
|
|
|
// Checks for inequality
|
|
inline bool operator!=(vector a, vector b) {
|
|
bool equality = true;
|
|
// Adds two vectors.
|
|
|
|
if (a.x == b.x && a.y == b.y && a.z == b.z)
|
|
equality = false;
|
|
|
|
return equality;
|
|
}
|
|
|
|
// Adds 2 vectors
|
|
inline vector operator+(vector a, vector b) {
|
|
// Adds two vectors.
|
|
|
|
a.x += b.x;
|
|
a.y += b.y;
|
|
a.z += b.z;
|
|
|
|
return a;
|
|
}
|
|
|
|
// Adds 2 vectors
|
|
inline vector operator+=(vector &a, vector b) { return (a = a + b); }
|
|
|
|
// Adds 2 matrices
|
|
inline matrix operator+(matrix a, matrix b) {
|
|
// Adds two 3x3 matrixs.
|
|
|
|
a.rvec += b.rvec;
|
|
a.uvec += b.uvec;
|
|
a.fvec += b.fvec;
|
|
|
|
return a;
|
|
}
|
|
|
|
// Adds 2 matrices
|
|
inline matrix operator+=(matrix &a, matrix b) { return (a = a + b); }
|
|
|
|
// Subtracts 2 vectors
|
|
inline vector operator-(vector a, vector b) {
|
|
// subtracts two vectors
|
|
|
|
a.x -= b.x;
|
|
a.y -= b.y;
|
|
a.z -= b.z;
|
|
|
|
return a;
|
|
}
|
|
|
|
// Subtracts 2 vectors
|
|
inline vector operator-=(vector &a, vector b) { return (a = a - b); }
|
|
|
|
// Subtracts 2 matrices
|
|
inline matrix operator-(matrix a, matrix b) {
|
|
// subtracts two 3x3 matrices
|
|
|
|
a.rvec = a.rvec - b.rvec;
|
|
a.uvec = a.uvec - b.uvec;
|
|
a.fvec = a.fvec - b.fvec;
|
|
|
|
return a;
|
|
}
|
|
|
|
// Subtracts 2 matrices
|
|
inline matrix operator-=(matrix &a, matrix b) { return (a = a - b); }
|
|
|
|
// Does a simple dot product calculation
|
|
inline float operator*(vector u, vector v) { return (u.x * v.x) + (u.y * v.y) + (u.z * v.z); }
|
|
|
|
// Scalar multiplication
|
|
inline vector operator*(vector v, float s) {
|
|
v.x *= s;
|
|
v.y *= s;
|
|
v.z *= s;
|
|
|
|
return v;
|
|
}
|
|
|
|
// Scalar multiplication
|
|
inline vector operator*=(vector &v, float s) { return (v = v * s); }
|
|
|
|
// Scalar multiplication
|
|
inline vector operator*(float s, vector v) { return v * s; }
|
|
|
|
// Scalar multiplication
|
|
inline matrix operator*(float s, matrix m) {
|
|
m.fvec = m.fvec * s;
|
|
m.uvec = m.uvec * s;
|
|
m.rvec = m.rvec * s;
|
|
|
|
return m;
|
|
}
|
|
|
|
// Scalar multiplication
|
|
inline matrix operator*(matrix m, float s) { return s * m; }
|
|
|
|
// Scalar multiplication
|
|
inline matrix operator*=(matrix &m, float s) { return (m = m * s); }
|
|
|
|
// Scalar division
|
|
inline vector operator/(vector src, float n) {
|
|
src.x /= n;
|
|
src.y /= n;
|
|
src.z /= n;
|
|
|
|
return src;
|
|
}
|
|
|
|
// Scalar division
|
|
inline vector operator/=(vector &src, float n) { return (src = src / n); }
|
|
|
|
// Scalar division
|
|
inline matrix operator/(matrix src, float n) {
|
|
src.fvec = src.fvec / n;
|
|
src.rvec = src.rvec / n;
|
|
src.uvec = src.uvec / n;
|
|
|
|
return src;
|
|
}
|
|
|
|
// Scalar division
|
|
inline matrix operator/=(matrix &src, float n) { return (src = src / n); }
|
|
|
|
// Computes a cross product between u and v, returns the result
|
|
// in Normal.
|
|
inline vector operator^(vector u, vector v) {
|
|
vector dest;
|
|
|
|
dest.x = (u.y * v.z) - (u.z * v.y);
|
|
dest.y = (u.z * v.x) - (u.x * v.z);
|
|
dest.z = (u.x * v.y) - (u.y * v.x);
|
|
|
|
return dest;
|
|
}
|
|
|
|
// Matrix transpose
|
|
inline matrix operator~(matrix m) {
|
|
float t;
|
|
|
|
t = m.uvec.x;
|
|
m.uvec.x = m.rvec.y;
|
|
m.rvec.y = t;
|
|
t = m.fvec.x;
|
|
m.fvec.x = m.rvec.z;
|
|
m.rvec.z = t;
|
|
t = m.fvec.y;
|
|
m.fvec.y = m.uvec.z;
|
|
m.uvec.z = t;
|
|
|
|
return m;
|
|
}
|
|
|
|
// Negate vector
|
|
inline vector operator-(vector a) {
|
|
a.x *= -1;
|
|
a.y *= -1;
|
|
a.z *= -1;
|
|
|
|
return a;
|
|
}
|
|
|
|
// Apply a matrix to a vector
|
|
inline vector operator*(vector v, matrix m) {
|
|
vector result;
|
|
|
|
result.x = v * m.rvec;
|
|
result.y = v * m.uvec;
|
|
result.z = v * m.fvec;
|
|
|
|
return result;
|
|
}
|
|
|
|
inline float vm_Dot3Vector(float x, float y, float z, vector *v) { return (x * v->x) + (y * v->y) + (z * v->z); }
|
|
|
|
#define vm_GetSurfaceNormal vm_GetNormal
|
|
|
|
#endif |