Descent3/dd_lnxsound/lnxsound.cpp
2024-04-16 12:56:40 -06:00

1192 lines
34 KiB
C++

/*
* $Logfile: /DescentIII/Main/dd_lnxsound/lnxsound.cpp $
* $Revision: 1.3 $
* $Date: 2000/06/24 01:15:15 $
* $Author: icculus $
*
* Low-level linux sound driver
*
* $Log: lnxsound.cpp,v $
* Revision 1.3 2000/06/24 01:15:15 icculus
* patched to compile.
*
* Revision 1.2 2000/05/29 05:17:52 icculus
* Now uses SDL threads instead of pthreads (but NOT SDL audio). Other
* fixes, too.
*
* Revision 1.1.1.1 2000/04/18 00:00:33 icculus
* initial checkin
*
*
* 18 10/17/99 3:47p Jeff
* added a function to get sound config parameters
*
* 17 8/26/99 7:25p Jeff
* improved sound. Sounds pretty good now...worried about constant low
* frame rate though (sub 10)
*
* 16 8/24/99 7:57p Jeff
* sound working very well now...although there is a small pause every 2
* seconds...
*
* 15 8/24/99 4:28a Jeff
* no more circular buffers, just take mixer output and write it right
* away.
*
* 14 8/23/99 4:17a Jeff
* barely 'correct' sound implements. A little static still and some
* sounds don't play (3d issue?)
*
* 13 8/21/99 2:55a Jeff
* fixed typo bug
*
* 12 8/20/99 7:21p Jeff
* sound! well, a little, still pretty buggy, but it's something
*
* 11 8/20/99 1:34a Jeff
* blah...got disconnected checking in the file
*
* 9 8/19/99 7:11p Jeff
* initialize sound library and start mixing thread
*
* 8 8/17/99 3:11p Jeff
* added llsGeometry::Clear
*
* 7 8/17/99 2:36p Jeff
* updated for new geometry functions
*
* 6 4/17/99 2:11a Jeff
* added low level geometry stubs
*
* 5 4/17/99 1:52a Jeff
* commented out Sounds[], included in ddsoundload.cpp
*
* 4 4/17/99 1:15a Jeff
* added SetGlobalReverbProperties
*
* 3 4/16/99 4:00a Jeff
* declare some needed globals
*
* 2 4/14/99 1:55a Jeff
* fixed case mismatched #includes
*
* 1 1/15/99 4:02a Jeff
*
* $NoKeywords: $
*/
// NEED THIS SINCE DDSNDLIB is a DD library.
#include "DDAccess.h"
#include <unistd.h>
#include <fcntl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <dlfcn.h>
#include <linux/soundcard.h>
#include <stdarg.h>
#include <errno.h>
#include "CFILE.H"
#include "pserror.h"
#include "mono.h"
#include "soundload.h"
#include "ssl_lib.h"
#include "mem.h"
#include "application.h"
#include "linux/lnxsound.h"
#include "ddlnxsound.h"
#include "mixer.h"
#include "ddio.h"
#include "SDL.h"
#include "SDL_thread.h"
#define SOUNDLIB_SAMPLE_RATE 22050
#define SOUNDLIB_SAMPLE_SIZE 16
#define SOUNDLIB_CHANNELS 2
/*
// ===============================
// pthread library functions
// ===============================
#include <pthread.h>
typedef int (*pthread_create_fp)(pthread_t *__thread,__const pthread_attr_t *__attr,void *(*__start_routine) (void
*),void *__arg); typedef void (*pthread_exit_fp)(void *__retval); typedef int (*pthread_detach_fp)(pthread_t __th);
typedef pthread_t (*pthread_self_fp)(void);
pthread_create_fp dpthread_create = NULL;
pthread_exit_fp dpthread_exit = NULL;
pthread_detach_fp dpthread_detach = NULL;
pthread_self_fp dpthread_self = NULL;
void *pthread_lib = NULL;
*/
// ===============================
#define MAX_SOUNDS_PLAYING_AT_ONCE 256
static sound_buffer_info sound_cache[MAX_SOUNDS_PLAYING_AT_ONCE];
static int sound_buffer_size = MAX_SOUNDS_PLAYING_AT_ONCE;
LNXSTREAM m_sb_info;
lnxsound *ll_sound_ptr;
class lnxsound_buffer : public sound_buffer {
public:
// if sound_device is -1 then it is a primary buffer
lnxsound_buffer(int buffer_size, int *sound_device = NULL);
~lnxsound_buffer();
int GetNumBufferBytes(void);
void Write(unsigned char *buffer, int amount);
private:
int *m_sound_device;
int m_buffer_size;
};
// A peroidic mixer that uses the primary buffer as a stream buffer
int StreamTimer(void *user_ptr);
lnxsound::lnxsound() : llsSystem() {
/*
pthread_lib = NULL;
dpthread_create = NULL;
dpthread_exit = NULL;
dpthread_detach = NULL;
dpthread_self = NULL;
*/
ll_sound_ptr = this;
sound_device = -1;
in_at_exit = false;
}
lnxsound::~lnxsound() {
in_at_exit = true;
DestroySoundLib();
SetSoundCard(NULL);
}
// Starts the sound library, maybe have it send back some information -- 3d support?
int lnxsound::InitSoundLib(char mixer_type, oeApplication *sos, unsigned char max_sounds_played) {
sound_device = open("/dev/dsp", O_WRONLY | O_NONBLOCK, 0);
if (sound_device < 0)
mprintf((0, "Sound: Unable to open /dev/dsp !"));
else {
// success
mprintf((0, "Sound: /dev/dsp opened for output. Configuring..."));
fcntl(sound_device, F_SETFL, 0); // remove nonblock flag.
// setup the soundcard
int arg, status;
int tmp = 11 | (2 << 16);
status = ioctl(sound_device, SNDCTL_DSP_SETFRAGMENT, &tmp);
if (status) {
Error("Sound: Unable to optimize fragment size\n");
close(sound_device);
sound_device = -1;
}
status = ioctl(sound_device, SNDCTL_DSP_RESET, 0);
if (status == -1) {
Error("Sound: Unable to reset sound system\n");
close(sound_device);
sound_device = -1;
}
// set sample size
arg = SOUNDLIB_SAMPLE_SIZE;
status = ioctl(sound_device, SOUND_PCM_WRITE_BITS, &arg);
if (status == -1) {
Error("Sound: Unable to set sample size (try --nosound)\n");
close(sound_device);
sound_device = -1;
}
if (arg != SOUNDLIB_SAMPLE_SIZE) {
Error("Sound: Unable to set sample size to %d bits (try --nosound)\n", SOUNDLIB_SAMPLE_SIZE);
close(sound_device);
sound_device = -1;
}
// set the data type
arg = AFMT_S16_LE;
status = ioctl(sound_device, SOUND_PCM_SETFMT, &arg);
if (status == -1) {
Error("Sound: Unable to set data type (try --nosound)\n");
close(sound_device);
sound_device = -1;
}
if (arg != AFMT_S16_LE) {
Error("Sound: Unable to set data type to signed 16bit Little Endian (try --nosound)\n");
close(sound_device);
sound_device = -1;
}
// set channels
arg = SOUNDLIB_CHANNELS;
status = ioctl(sound_device, SOUND_PCM_WRITE_CHANNELS, &arg);
if (status == -1) {
Error("Sound: Unable to set channels (try --nosound)\n");
close(sound_device);
sound_device = -1;
}
if (arg != SOUNDLIB_CHANNELS) {
Error("Sound: Unable to set channels to %s (try --nosound)\n", (SOUNDLIB_CHANNELS == 2) ? "stereo" : "mono");
close(sound_device);
sound_device = -1;
}
// set sample rate
arg = SOUNDLIB_SAMPLE_RATE;
status = ioctl(sound_device, SOUND_PCM_WRITE_RATE, &arg);
mprintf((0, "Sound: Sample rate was set to %d.", arg));
if (status == -1) {
Error("Sound: Unable to set sample rate (try --nosound)\n");
close(sound_device);
sound_device = -1;
}
if ((arg < SOUNDLIB_SAMPLE_RATE - 50) && (arg > SOUNDLIB_SAMPLE_RATE + 50)) {
Error("Sound: Unable to set sample rate to ~%d (try --nosound)\n", SOUNDLIB_SAMPLE_RATE);
close(sound_device);
sound_device = -1;
}
if (sound_device >= 0) {
mprintf((0, "Sound: Hardware configured. Kicking off stream thread..."));
StartStreaming();
m_total_sounds_played = 0;
m_cur_sounds_played = 0;
m_in_sound_frame = false;
m_pending_actions = false;
m_cache_stress_timer = 0.0f;
m_timer_last_frametime = -1;
m_sound_quality = SQT_HIGH;
} // if
}
return (sound_device >= 0) ? 1 : 0;
}
bool lnxsound::GetDeviceSettings(int *device, unsigned int *freq, unsigned int *bit_depth, unsigned int *channels) {
if (sound_device == -1)
return false;
*device = sound_device;
*freq = SOUNDLIB_SAMPLE_RATE;
*bit_depth = SOUNDLIB_SAMPLE_SIZE;
*channels = SOUNDLIB_CHANNELS;
return true;
}
// Cleans up after the Sound Library
void lnxsound::DestroySoundLib(void) {
EndStreaming();
if (sound_device > 0) {
close(sound_device);
sound_device = -1;
}
}
// Locks and unlocks sounds (used when changing play_info data)
bool lnxsound::LockSound(int sound_uid) { return false; }
bool lnxsound::UnlockSound(int sound_uid) { return false; }
bool lnxsound::SetSoundQuality(char quality) {
int i;
if (quality == m_sound_quality)
return true;
// pause any sounds that may be playing
PauseSounds();
if (quality == SQT_NORMAL) {
m_sound_quality = SQT_NORMAL;
} else {
m_sound_quality = SQT_HIGH;
}
for (i = 0; i < MAX_SOUNDS; i++) {
if (Sounds[i].used != 0) {
int j = Sounds[i].sample_index;
if (SoundFiles[j].sample_8bit && m_sound_quality == SQT_HIGH) {
GlobalFree(SoundFiles[j].sample_8bit);
SoundFiles[j].sample_8bit = NULL;
CheckAndForceSoundDataAlloc(i);
}
if (SoundFiles[j].sample_16bit && m_sound_quality == SQT_NORMAL) {
int count;
ASSERT(SoundFiles[j].sample_8bit == NULL);
SoundFiles[j].sample_8bit = (unsigned char *)GlobalAlloc(0, SoundFiles[j].sample_length);
// NOTE: Interesting note on sound conversion: 16 bit sounds are signed (0 biase). 8 bit sounds are unsigned
// (+128 biase).
for (count = 0; count < (int)SoundFiles[j].sample_length; count++) {
SoundFiles[j].sample_8bit[count] = (unsigned char)((((int)SoundFiles[j].sample_16bit[count]) + 32767) >> 8);
}
GlobalFree(SoundFiles[j].sample_16bit);
SoundFiles[j].sample_16bit = NULL;
}
}
}
ResumeSounds();
return true;
}
char lnxsound::GetSoundQuality(void) { return m_sound_quality; }
bool lnxsound::SetSoundMixer(char mixer_type) { return true; }
char lnxsound::GetSoundMixer(void) { return SOUND_MIXER_SOFTWARE_16; }
// Determines if a sound will play. Takes into account maximum allowable
// sounds.
// Also put prioritization code in here
// ignore reserved slots
#ifdef _DEBUG
short lnxsound::FindFreeSoundSlot(int sound_index, float volume, int priority)
#else
short lnxsound::FindFreeSoundSlot(float volume, int priority)
#endif
{
int current_slot;
sound_buffer_info *sb;
for (current_slot = 0; current_slot < MAX_SOUNDS_PLAYING_AT_ONCE; current_slot++) {
sb = &sound_cache[current_slot];
if (sb->m_status == SSF_UNUSED) {
return current_slot;
}
}
// no more slots? take priority into account.
// throw out lowest priority sound slot (must be lower than or equal to new sound priority)
float weighted_priority = (priority * 2.0f) * volume;
if (current_slot == MAX_SOUNDS_PLAYING_AT_ONCE) {
int throw_out_slot = -1, equiv_priority_slot = -1;
float weighted_priorityA, weighted_priorityB;
for (current_slot = 0; current_slot < MAX_SOUNDS_PLAYING_AT_ONCE; current_slot++) {
sb = &sound_cache[current_slot];
if (!(sb->m_status & (SSF_PLAY_LOOPING + SSF_PLAY_STREAMING))) {
weighted_priorityA = sb->play_info->priority * 2.0f * sb->m_volume;
if (weighted_priorityA < weighted_priority) {
if (throw_out_slot == -1) {
throw_out_slot = current_slot;
} else {
play_information *play_info2 = sound_cache[throw_out_slot].play_info;
weighted_priorityB = play_info2->priority * 2.0f * sb->m_volume;
if (weighted_priorityB > weighted_priorityA) {
throw_out_slot = current_slot;
}
}
}
else if (equiv_priority_slot == -1 && weighted_priorityA == weighted_priority) {
equiv_priority_slot = current_slot;
}
}
}
// if no slot found to stop, look for a slot with priority == new priority
if (throw_out_slot == -1) {
throw_out_slot = equiv_priority_slot;
}
if (throw_out_slot > -1) {
sb = &sound_cache[throw_out_slot];
StopSound(sb->m_unique_id, SKT_HOLD_UNTIL_STOP);
mprintf((0, "DDSNDLIB: Replace sound (p:%d) with sound (p:%d) in slot %d\n", sb->play_info->priority, priority,
throw_out_slot));
return throw_out_slot;
}
}
#ifdef _DEBUG
if (sound_index > -1) {
mprintf((0, "DDSNDLIB: Sound %s with priority (%d) too low.\n", Sounds[sound_index].name, priority));
} else {
mprintf((0, "DDSNDLIB: Sound unknown with priority (%d) too low.\n", priority));
}
#endif
return -1;
}
// Plays a 2d sound
int lnxsound::PlaySound2d(play_information *play_info, int sound_index, float f_volume, float f_pan, bool f_looped) {
sound_buffer_info *sb = NULL;
short sound_slot;
if (sound_device == -1) {
return -1;
}
// calculate volume and pan
f_volume = (f_volume < 0.0f) ? 0.0f : (f_volume > 1.0f) ? 1.0f : f_volume;
play_info->left_volume = play_info->right_volume = f_volume;
f_pan = (f_pan < -1.0f) ? -1.0f : (f_pan > 1.0f) ? 1.0f : f_pan;
if (f_pan < 0.0) {
play_info->right_volume += f_volume * f_pan;
} else {
play_info->left_volume -= f_volume * f_pan;
}
// do common processing.
if (SoundFiles[Sounds[sound_index].sample_index].used == 0) {
mprintf((0, "Tryed to play %d sound, it DNE.\n", sound_index));
return -1;
}
#ifdef _DEBUG
sound_slot = FindFreeSoundSlot(sound_index, f_volume, play_info->priority);
#else
sound_slot = FindFreeSoundSlot(f_volume, play_info->priority);
#endif
if (sound_slot < 0) {
// do prioritization code here.
return -1;
}
sb = &sound_cache[sound_slot];
m_total_sounds_played++;
sb->play_info = play_info;
sb->m_unique_id = MakeUniqueId(sound_slot);
sb->m_buffer_type = SBT_2D;
sb->m_sound_index = sound_index;
sb->m_status = SSF_UNUSED;
ASSERT(sb->m_unique_id != -1);
// play 2d sound
sb->m_status = (f_looped) ? SSF_PLAY_LOOPING : SSF_PLAY_NORMAL;
return sb->m_unique_id;
}
// This function limits the number of sounds cached to 255(8bits) and 256 bit is for invalid channel
// The purpose is to create unique signatures for each sound played (and allow for
// the slot_number to be quickly determined)
inline int lnxsound::MakeUniqueId(int sound_slot) { return ((((int)m_total_sounds_played) << 8) + sound_slot); }
inline int lnxsound::ValidateUniqueId(int sound_uid) {
if (sound_uid == sound_cache[sound_uid & 0x00FF].m_unique_id) {
return sound_uid & 0x00FF;
} else {
return -1;
}
}
int lnxsound::PlayStream(play_information *play_info) {
short sound_slot;
int ds_flags = 0;
ASSERT(play_info != NULL);
float volume = (play_info->left_volume > play_info->right_volume) ? play_info->left_volume : play_info->right_volume;
if (sound_device == -1)
return -1;
#ifdef _DEBUG
sound_slot = FindFreeSoundSlot(-1, volume, play_info->priority);
#else
sound_slot = FindFreeSoundSlot(volume, play_info->priority);
#endif
// Out of sound slots
if (sound_slot < 0) {
return -1;
}
m_total_sounds_played++;
sound_cache[sound_slot].play_info = play_info;
sound_cache[sound_slot].m_unique_id = MakeUniqueId(sound_slot);
ASSERT(sound_cache[sound_slot].m_unique_id != -1);
sound_cache[sound_slot].m_buffer_type = SBT_2D;
sound_cache[sound_slot].m_status = SSF_PLAY_STREAMING;
m_cur_sounds_played++;
return (sound_cache[sound_slot].m_unique_id);
}
void lnxsound::SetListener(pos_state *cur_pos) {
if (sound_device == -1)
return;
m_emulated_listener.orient = *cur_pos->orient;
m_emulated_listener.position = *cur_pos->position;
m_emulated_listener.velocity = *cur_pos->velocity;
}
int lnxsound::PlaySound3d(play_information *play_info, int sound_index, pos_state *cur_pos, float adjusted_volume,
bool f_looped, float reverb) //, unsigned short frequency
{
short sound_slot;
int ds_flags = 0;
float volume;
volume = adjusted_volume; // Adjust base volume by sent volume, let 3d stuff do the rest
if (sound_device == -1)
return -1;
ASSERT(Sounds[sound_index].used != 0);
if (Sounds[sound_index].used == 0)
return -1;
float dist;
vector dir_to_sound = *cur_pos->position - m_emulated_listener.position;
float pan;
dist = vm_NormalizeVector(&dir_to_sound);
if (dist < .1f) {
dir_to_sound = m_emulated_listener.orient.fvec;
}
if (dist >= Sounds[sound_index].max_distance) {
return -1;
} else if (dist > Sounds[sound_index].min_distance) {
volume *= (1.0 - ((dist - Sounds[sound_index].min_distance) /
(Sounds[sound_index].max_distance - Sounds[sound_index].min_distance)));
}
pan = (dir_to_sound * m_emulated_listener.orient.rvec);
if (volume < 0.0f)
volume = 0.0f;
else if (volume > 1.0f)
volume = 1.0f;
if (pan < -1.0f)
pan = -1.0f;
else if (pan > 1.0f)
pan = 1.0f;
return PlaySound2d(play_info, sound_index, volume, pan, f_looped);
}
void lnxsound::AdjustSound(int sound_uid, float f_volume, float f_pan, unsigned short frequency) {
int current_slot;
if (sound_device == -1)
return;
if ((current_slot = ValidateUniqueId(sound_uid)) == -1)
return;
if (sound_cache[current_slot].m_status == SSF_UNUSED)
return;
sound_buffer_info *sb = &sound_cache[current_slot];
play_information *play_info = sb->play_info;
play_info->left_volume = play_info->right_volume = f_volume;
if (f_pan < 0.0)
play_info->right_volume += f_volume * f_pan;
else
play_info->left_volume -= f_volume * f_pan;
}
void lnxsound::AdjustSound(int sound_uid, pos_state *cur_pos, float adjusted_volume, float reverb) {
if (sound_device == -1)
return;
int current_slot;
if ((current_slot = ValidateUniqueId(sound_uid)) == -1)
return;
if (sound_cache[current_slot].m_status == SSF_UNUSED)
return;
// We need to determine the pan and volume
float volume;
volume = adjusted_volume;
float dist;
vector dir_to_sound = *cur_pos->position - m_emulated_listener.position;
float pan;
dist = vm_NormalizeVector(&dir_to_sound);
if (dist < .1f) {
dir_to_sound = m_emulated_listener.orient.fvec;
}
if (dist >= Sounds[sound_cache[current_slot].m_sound_index].max_distance) {
volume = 0.0f;
} else if (dist > Sounds[sound_cache[current_slot].m_sound_index].min_distance) {
volume *= (1.0 - ((dist - Sounds[sound_cache[current_slot].m_sound_index].min_distance) /
(Sounds[sound_cache[current_slot].m_sound_index].max_distance -
Sounds[sound_cache[current_slot].m_sound_index].min_distance)));
}
pan = (dir_to_sound * m_emulated_listener.orient.rvec);
if (volume < 0.0f)
volume = 0.0f;
else if (volume > 1.0f)
volume = 1.0f;
if (pan < -1.0f)
pan = -1.0f;
else if (pan > 1.0f)
pan = 1.0f;
AdjustSound(sound_cache[current_slot].m_unique_id, volume, pan, 22050);
}
void lnxsound::StopAllSounds(void) {
int current_slot;
for (current_slot = 0; current_slot < MAX_SOUNDS_PLAYING_AT_ONCE; current_slot++) {
if (sound_cache[current_slot].m_status != SSF_UNUSED) {
StopSound(sound_cache[current_slot].m_unique_id);
}
}
}
// Checks if a sound is playing (removes finished sound);
bool lnxsound::IsSoundInstancePlaying(int sound_uid) {
int current_slot;
if (sound_device == -1)
return false;
if ((current_slot = ValidateUniqueId(sound_uid)) == -1)
return false;
if (sound_cache[current_slot].m_status != SSF_UNUSED) {
return true;
}
return false;
}
int lnxsound::IsSoundPlaying(int sound_index) {
int current_slot;
if (sound_device == -1)
return -1;
for (current_slot = 0; current_slot < MAX_SOUNDS_PLAYING_AT_ONCE; current_slot++) {
if ((sound_cache[current_slot].m_status != SSF_UNUSED) &&
(sound_cache[current_slot].m_sound_index == sound_index)) {
return sound_cache[current_slot].m_unique_id;
}
}
return -1;
}
// Stops 2d and 3d sounds
void lnxsound::StopSound(int sound_uid, unsigned char f_immediately = SKT_STOP_IMMEDIATELY) {
int current_slot;
sound_buffer_info *sb;
if (sound_device == -1)
return;
if ((current_slot = ValidateUniqueId(sound_uid)) == -1)
return;
sb = &sound_cache[current_slot];
if (sb->m_status == SSF_UNUSED)
return;
// update sound count.
m_cur_sounds_played--;
if (f_immediately == SKT_STOP_AFTER_LOOP) {
sb->m_status &= ~SSF_PLAY_LOOPING;
sb->m_status |= SSF_PLAY_NORMAL;
return;
}
sound_cache[current_slot].m_status = SSF_UNUSED;
}
// Pause all sounds/resume all sounds
void lnxsound::PauseSounds(void) {
int current_slot;
for (current_slot = 0; current_slot < MAX_SOUNDS_PLAYING_AT_ONCE; current_slot++) {
sound_buffer_info *sb = &sound_cache[current_slot];
if (sb->m_status != SSF_UNUSED && !(sb->m_status & SSF_PAUSED)) {
sb->m_status |= SSF_PAUSED;
}
}
}
void lnxsound::ResumeSounds(void) {
int current_slot;
for (current_slot = 0; current_slot < MAX_SOUNDS_PLAYING_AT_ONCE; current_slot++) {
sound_buffer_info *sb = &sound_cache[current_slot];
if (sb->m_status != SSF_UNUSED && (sb->m_status & SSF_PAUSED)) {
sound_cache[current_slot].m_status &= (~SSF_PAUSED);
}
}
}
void lnxsound::PauseSound(int sound_uid) {
int current_slot;
for (current_slot = 0; current_slot < MAX_SOUNDS_PLAYING_AT_ONCE; current_slot++) {
sound_buffer_info *sb = &sound_cache[current_slot];
if (sb->m_unique_id == sound_uid) {
if (sb->m_status != SSF_UNUSED && !(sb->m_status & SSF_PAUSED)) {
sb->m_status |= SSF_PAUSED;
}
break;
}
}
}
void lnxsound::ResumeSound(int sound_uid) {
int current_slot;
for (current_slot = 0; current_slot < MAX_SOUNDS_PLAYING_AT_ONCE; current_slot++) {
if (sound_uid == sound_cache[current_slot].m_unique_id) {
if (sound_cache[current_slot].m_status != SSF_UNUSED && (sound_cache[current_slot].m_status & SSF_PAUSED)) {
sound_cache[current_slot].m_status &= (~SSF_PAUSED);
break;
}
}
}
}
bool lnxsound::CheckAndForceSoundDataAlloc(int sound_index) {
int result;
int sound_file_index = Sounds[sound_index].sample_index;
// ASSERT(sound_file_index >= 0 && sound_file_index < MAX_SOUND_FILES);
if (sound_file_index < 0 || sound_file_index >= MAX_SOUND_FILES) {
return false;
}
// Check if the sample data is already loaded
if (SoundFiles[sound_file_index].sample_16bit != NULL || SoundFiles[sound_file_index].sample_8bit != NULL)
return true;
// If not, get the sound data
result = SoundLoadWaveFile(SoundFiles[sound_file_index].name, Sounds[sound_index].import_volume, sound_file_index,
(m_sound_quality == SQT_HIGH), true);
// Why would it load once (table load time) and not now?
if (!result)
return false;
mprintf((0, "Sound %s loaded.\n", SoundFiles[sound_file_index].name));
return true;
}
// Begin sound frame
void lnxsound::SoundStartFrame(void) {
float frame_time;
int current_slot;
int i;
if (m_timer_last_frametime == -1) {
frame_time = 0.0f;
} else {
frame_time = (timer_GetMSTime() - m_timer_last_frametime) / 1000.0f;
}
m_timer_last_frametime = timer_GetMSTime();
// perform necessary functions if sound events are pending for frame, this doesn't have to do anything
// if the mixer doesn't require such actions. Aureal does though.
if (m_pending_actions) {
mprintf((0, "pending actions\n"));
}
m_in_sound_frame = true;
m_pending_actions = false;
int counter = 0, loop_counter = 0, stream_counter = 0, buf_loop_counter = 0;
#ifdef _DEBUG
int n_p5 = 0, n_p4 = 0, n_p3 = 0, n_p2 = 0, n_p1 = 0, n_p0 = 0;
#endif
for (current_slot = 0; current_slot < MAX_SOUNDS_PLAYING_AT_ONCE; current_slot++) {
sound_buffer_info *sb = &sound_cache[current_slot];
if (sb->m_status != SSF_UNUSED) {
counter++;
if (sb->m_status & SSF_PLAY_LOOPING) {
if (sb->m_status & SSF_BUFFERED_LOOP)
buf_loop_counter++;
loop_counter++;
}
if (sb->m_status & SSF_PLAY_STREAMING)
stream_counter++;
#ifdef _DEBUG
if (sb->play_info->priority == SND_PRIORITY_CRITICAL)
n_p5++;
else if (sb->play_info->priority == SND_PRIORITY_HIGHEST)
n_p4++;
else if (sb->play_info->priority == SND_PRIORITY_HIGH)
n_p3++;
else if (sb->play_info->priority == SND_PRIORITY_NORMAL)
n_p2++;
else if (sb->play_info->priority == SND_PRIORITY_LOW)
n_p1++;
else if (sb->play_info->priority == SND_PRIORITY_LOWEST)
n_p0++;
#endif
}
}
// update cache stress timer.
if (counter < (MAX_SOUNDS_PLAYING_AT_ONCE * 3 / 4)) {
m_cache_stress_timer += frame_time;
} else {
m_cache_stress_timer = 0.0f;
}
#ifdef _DEBUG
mprintf_at((3, 2, 0, "LNS: %02d/%02d", counter, MAX_SOUNDS_PLAYING_AT_ONCE));
mprintf_at((3, 3, 1, "Lp: %02d", loop_counter));
mprintf_at((3, 4, 1, "St: %02d", stream_counter));
mprintf_at((3, 5, 0, " Ot: %02d", counter - loop_counter - stream_counter));
mprintf_at((3, 2, 20, "P5:%02d P4:%02d P3:%02d", n_p5, n_p4, n_p3));
mprintf_at((3, 3, 20, "P2:%02d P1:%02d P0:%02d", n_p2, n_p1, n_p0));
#endif
}
// End sound frame
void lnxsound::SoundEndFrame(void) {
CheckForErrors(); // handles errors.
m_in_sound_frame = false;
}
// Sound System Error Handler.
void lnxsound::CheckForErrors() {
// if a fatal error occurred, quit and display an error
// non fatal errors should be put inside a logfile, or just mprinted out.
switch (m_lib_error_code) {
case SSL_ERROR_SAMPLE_NODATA:
Error("%s\nSample had no data.", m_error_text);
break;
case SSL_ERROR_STREAMMIXER:
Error("%s\nMixer alignment check failed.", m_error_text);
break;
case SSL_ERROR_GENERIC:
Error("%s\nGeneric error.", m_error_text);
break;
}
// must call!
llsSystem::CheckForErrors();
}
// returns the error string.
char *lnxsound::GetErrorStr() const {
static char buffer[] = "No Error Given";
return buffer;
}
bool lnxsound::SetGlobalReverbProperties(float volume, float damping, float decay) { return false; }
void lnxsound::StartStreaming(void) {
/*
// Load the thread library
if(!pthread_lib)
{
// load the library
pthread_lib = dlopen("libpthread.so",RTLD_NOW|RTLD_GLOBAL);
if(!pthread_lib)
{
Error("Unable to load libpthread.so\n");
exit(1);
}
dpthread_create = (pthread_create_fp)dlsym(pthread_lib,"pthread_create");
if(!dpthread_create)
{
dlclose(pthread_lib);
pthread_lib = NULL;
Error("Unable to find symbol pthread_create in libpthread.so\n");
exit(1);
}
dpthread_exit = (pthread_exit_fp)dlsym(pthread_lib,"pthread_exit");
if(!dpthread_exit)
{
dlclose(pthread_lib);
pthread_lib = NULL;
Error("Unable to find symbol pthread_exit in libpthread.so\n");
exit(1);
}
dpthread_detach = (pthread_detach_fp)dlsym(pthread_lib,"pthread_detach");
if(!dpthread_detach)
{
dlclose(pthread_lib);
pthread_lib = NULL;
Error("Unable to find symbol pthread_detach in libpthread.so\n");
exit(1);
}
dpthread_self = (pthread_self_fp)dlsym(pthread_lib,"pthread_self");
if(!dpthread_self)
{
dlclose(pthread_lib);
pthread_lib = NULL;
Error("Unable to find symbol pthread_detach in libpthread.so\n");
exit(1);
}
}
*/
m_sb_info.thread_request_kill = false;
m_sb_info.thread_alive = false;
m_sb_info.thread_waiting_for_death = false;
m_sb_info.sound_device = &sound_device;
m_sb_info.p_error_code = &m_lib_error_code;
m_sb_info.fp_SetError = lnxsound_SetError;
m_sb_info.fp_ErrorText = lnxsound_ErrorText;
// Start mixing thread.
// m_sb_info.thread_handle = dpthread_create(&m_sb_info.thread_id, NULL, StreamTimer,&m_sb_info);
m_sb_info.thread_id = SDL_CreateThread(StreamTimer, &m_sb_info);
if (m_sb_info.thread_id == NULL)
m_sb_info.thread_handle = ((m_sb_info.thread_id == NULL) ? -1 : 0);
if (m_sb_info.thread_handle != 0) {
mprintf((0, "Thread failed\n"));
Int3();
return;
}
}
void lnxsound::EndStreaming(void) {
m_sb_info.thread_request_kill = true;
int count = 150;
mprintf((0, "Waiting for sound thread..."));
while (count > 0 && !m_sb_info.thread_waiting_for_death) {
count--;
Sleep(50);
mprintf((0, "."));
}
mprintf((0, "Done %s\n", (count <= 0) ? "EARLY" : "All Good"));
/*
if(pthread_lib)
{
if(!in_at_exit)
{
//causes a segfault..BLAH!
//dlclose(pthread_lib);
}
pthread_lib = NULL;
dpthread_create = NULL;
dpthread_exit = NULL;
dpthread_self = NULL;
dpthread_detach = NULL;
}
*/
}
// may be called before init (must be to be valid, the card passed here will be initialized in InitSoundLib)
void lnxsound::SetSoundCard(const char *name) {}
// set special parameters for the 3d environment.
// of strcuture passed, you must set the appropriate 'flags' value for values you wish to modify
void lnxsound::SetEnvironmentValues(const t3dEnvironmentValues *env) {}
// get special parameters for the 3d environment.
// of strcuture passed, you must set the appropriate 'flags' value for values you wish to modify
void lnxsound::GetEnvironmentValues(t3dEnvironmentValues *env) {}
// enable special parameters for the 3d environment.
// of strcuture passed, you must set the appropriate 'flags' value for values you wish to modify
void lnxsound::SetEnvironmentToggles(const t3dEnvironmentToggles *env) {}
// get states of special parameters for the 3d environment.
// of strcuture passed, you must set the appropriate 'flags' value for values you wish to modify
void lnxsound::GetEnvironmentToggles(t3dEnvironmentToggles *env) {}
void lnxsound_SetError(int code) { ll_sound_ptr->SetError(code); }
void lnxsound_ErrorText(char *fmt, ...) {
char buffer[384];
va_list args;
va_start(args, fmt);
vsprintf(buffer, fmt, args);
va_end(args);
ll_sound_ptr->ErrorText(buffer);
}
// A peroidic mixer that uses the primary buffer as a stream buffer
int StreamTimer(void *user_ptr) {
LNXSTREAM *sb_info = (LNXSTREAM *)user_ptr;
/*
int status;
status = dpthread_detach(dpthread_self());
if(status!=0)
{
Error("Detach thread error %d\n",status);
exit(1);
}
*/
sb_info->thread_alive = true;
int blocksize;
ioctl(*sb_info->sound_device, SNDCTL_DSP_GETBLKSIZE, &blocksize);
mprintf((0, "Sound: Current block size is (%d).", blocksize));
/*
if(blocksize != 2048)
{
Error("Sound: Blocksize != 2048 bytes.\n");
exit(1);
} // if
*/
software_mixer mixer;
lnxsound_buffer primary(blocksize, sb_info->sound_device);
// setup mixer
tMixerInit mi;
mi.primary_buffer = &primary;
mi.primary_frequency = SOUNDLIB_SAMPLE_RATE;
mi.max_sounds_available = &sound_buffer_size;
mi.sound_cache = sound_cache;
mi.primary_alignment = SOUNDLIB_CHANNELS * (SOUNDLIB_SAMPLE_SIZE >> 3);
mi.fp_SetError = sb_info->fp_SetError;
mi.fp_ErrorText = sb_info->fp_ErrorText;
mi.p_error_code = sb_info->p_error_code;
mi.ll_sound_ptr = ll_sound_ptr;
if (!mixer.Initialize(&mi)) {
// return NULL;
return (0);
} // if
int sleep_time_i;
double sleep_time;
sleep_time = ((double)blocksize) / (4.0f * 22050.0f); // in seconds
sleep_time_i = (int)(sleep_time * 1000000.0f);
fd_set fdset;
fd_set scratchset;
struct timeval zerowait = {0, 0};
int rc, mytime = 0;
FD_ZERO(&fdset);
FD_SET(0, &fdset);
while (!sb_info->thread_request_kill) {
mytime = 0;
do {
scratchset = fdset;
rc = select(FD_SETSIZE, &scratchset, 0, 0, &zerowait);
if (rc > 0) {
mytime++;
} else if (rc < 0) {
}
} while (rc > 0);
mixer.DoFrame();
}
mprintf((0, "Sound: Exit sound thread"));
sb_info->thread_alive = false;
sb_info->thread_waiting_for_death = true;
return 0;
}
lnxsound_buffer::lnxsound_buffer(int buffer_size, int *sound_device) {
m_sound_device = sound_device;
m_buffer_size = buffer_size;
}
lnxsound_buffer::~lnxsound_buffer() {}
void lnxsound_buffer::Write(unsigned char *buffer, int amount) {
if (m_sound_device <= 0)
return; // only primary buffers supported
ioctl(*m_sound_device, SNDCTL_DSP_POST, 0);
// slam the entire buffer
int res = write(*m_sound_device, buffer, amount);
if (res == -1) {
mprintf((0, "ERROR WRITING SOUND BUFFER Device %d amount %d bytes\n", *m_sound_device, amount));
return;
} else if (res != amount) {
mprintf((0, "ERROR: SOUND BUFFER NOT COMPLETELY WRITTEN %d\n", res));
}
}
int lnxsound_buffer::GetNumBufferBytes(void) { return m_buffer_size; }
///////////////////////////////////////////////////////////////////////
// llsGeometry
#include "ddsndgeometry.h"
// specify a sound library to associate geometry with
bool llsGeometry::Init(llsSystem *snd_sys) { return false; }
// closes low level geometry system.
void llsGeometry::Shutdown() {}
void llsGeometry::StartFrame() {}
void llsGeometry::EndFrame() {}
// clears out geometry info
void llsGeometry::Clear() {}
// polygon lists
// is a group cached?, check before rendering it.
void llsGeometry::IsGroupValid(int group) {}
// marks beginning of a list of polygons to render, (-1 group for non cache)
void llsGeometry::StartPolygonGroup(int group) {}
// ends a list of polygons to render.
void llsGeometry::EndPolygonGroup(int group) {}
// renders a group.
void llsGeometry::RenderGroup(int group) {}
// primatives, nv = number of verts, and verts is an array of pointers to vertices.
// you can pass a sound material value if you want special reflective properties on this polygon.
void llsGeometry::AddPoly(int nv, vector **verts, unsigned tag, tSoundMaterial material) {}
// 4 verts here.
void llsGeometry::AddQuad(unsigned tag, vector **verts) {}
// 3 verts here.
void llsGeometry::AddTriangle(unsigned tag, vector **verts) {}
void llsGeometry::CreateMaterial(tSoundMaterial material, float transmit_gain, float transmit_highfreq,
float reflect_gain, float reflect_highfreq) {}
void llsGeometry::DestroyMaterial(tSoundMaterial material) {}