Descent3/scripts/osiris_vector.h
2024-04-16 12:56:40 -06:00

1252 lines
34 KiB
C

#ifndef OSIRIS_VECTOR_H
#define OSIRIS_VECTOR_H
#include <math.h>
#include <time.h>
#include "vecmat_external.h"
const vector Zero_vector = {0.0f, 0.0f, 0.0f};
// Disable the "possible loss of data" warning
#pragma warning(disable : 4244)
// Angles are unsigned shorts
typedef unsigned short angle;
// The basic fixed-point type
typedef long fix;
#define PI 3.141592654
// Constants for converted between fix and float
#define FLOAT_SCALER 65536.0
#define FIX_SHIFT 16
// 1.0 in fixed-point
#define F1_0 (1 << FIX_SHIFT)
// Generate the data for the trig tables. Must be called before trig functions
void InitMathTables();
// Returns the sine of the given angle. Linearly interpolates between two entries in a 256-entry table
float FixSin(angle a);
// Returns the cosine of the given angle. Linearly interpolates between two entries in a 256-entry table
float FixCos(angle a);
// Returns the sine of the given angle, but does no interpolation
float FixSinFast(angle a);
// Returns the cosine of the given angle, but does no interpolation
float FixCosFast(angle a);
#define Round(x) ((int)(x + 0.5))
fix FloatToFixFast(float num);
// Conversion macros
//??#define FloatToFix(num) Round((num) * FLOAT_SCALER)
#define FloatToFix(num) ((fix)((num)*FLOAT_SCALER))
#define IntToFix(num) ((num) << FIX_SHIFT)
#define ShortToFix(num) (((long)(num)) << FIX_SHIFT)
#define FixToFloat(num) (((float)(num)) / FLOAT_SCALER)
#define FixToInt(num) ((num) >> FIX_SHIFT)
#define FixToShort(num) ((short)((num) >> FIX_SHIFT))
/* --NOT NEEDED -JEFF
//Fixed-point math functions in inline ASM form
#if defined(MACINTOSH)
#include "fixmac.h"
#elif defined(WIN32)
#include "..\..\main\win\fixwin32.h"
#endif
*/
// Tables for trig functions
float sincos_table[321]; // 256 entries + 64 sin-only + 1 for interpolation
angle asin_table[257]; // 1 quadrants worth, +1 for interpolation
angle acos_table[257];
// Generate the data for the trig tables
void InitMathTables() {
int i;
float rad, s, c;
for (i = 0; i < 321; i++) {
rad = (float)((double)i / 256.0 * 2 * PI);
sincos_table[i] = (float)sin(rad);
}
for (i = 0; i < 256; i++) {
s = asin((float)i / 256.0);
c = acos((float)i / 256.0);
s = (s / (PI * 2));
c = (c / (PI * 2));
asin_table[i] = FloatToFix(s);
acos_table[i] = FloatToFix(c);
}
asin_table[256] = asin_table[255];
acos_table[256] = acos_table[255];
// Initialize a random seed.
srand(time(NULL));
}
// Returns the sine of the given angle. Linearly interpolates between two entries in a 256-entry table
float FixSin(angle a) {
int i, f;
float s0, s1;
i = (a >> 8) & 0xff;
f = a & 0xff;
s0 = sincos_table[i];
s1 = sincos_table[i + 1];
return (float)(s0 + ((s1 - s0) * (double)f / 256.0));
}
// Returns the cosine of the given angle. Linearly interpolates between two entries in a 256-entry table
float FixCos(angle a) {
int i, f;
float c0, c1;
i = (a >> 8) & 0xff;
f = a & 0xff;
c0 = sincos_table[i + 64];
c1 = sincos_table[i + 64 + 1];
return (float)(c0 + ((c1 - c0) * (double)f / 256.0));
}
// Returns the sine of the given angle, but does no interpolation
float FixSinFast(angle a) {
int i;
i = ((a + 0x80) >> 8) & 0xff;
return sincos_table[i];
}
// Returns the cosine of the given angle, but does no interpolation
float FixCosFast(angle a) {
int i;
i = ((a + 0x80) >> 8) & 0xff;
return sincos_table[i + 64];
}
// use this instead of:
// for: (int)floor(x+0.5f) use FloatRound(x)
// (int)ceil(x-0.5f) use FloatRound(x)
// (int)floor(x-0.5f) use FloatRound(x-1.0f)
// (int)floor(x) use FloatRound(x-0.5f)
// for values in the range -2048 to 2048
// Set a vector to {0,0,0}
int FloatRound(float x) {
float nf;
nf = x + 8390656.0f;
return ((*((int *)&nf)) & 0x7FFFFF) - 2048;
}
// A fast way to convert floats to fix
fix FloatToFixFast(float x) {
float nf;
nf = x * 65536.0f + 8390656.0f;
return ((*((int *)&nf)) & 0x7FFFFF) - 2048;
}
// Get rid of the "no return value" warnings in the next three functions
#pragma warning(disable : 4035)
// compute inverse sine
angle FixAsin(float v) {
fix vv;
int i, f, aa;
vv = FloatToFix(fabs(v));
if (vv >= F1_0) // check for out of range
return 0x4000;
i = (vv >> 8) & 0xff;
f = vv & 0xff;
aa = asin_table[i];
aa = aa + (((asin_table[i + 1] - aa) * f) >> 8);
if (v < 0)
aa = F1_0 - aa;
return aa;
}
// compute inverse cosine
angle FixAcos(float v) {
fix vv;
int i, f, aa;
vv = FloatToFix(fabs(v));
if (vv >= F1_0) // check for out of range
return 0;
i = (vv >> 8) & 0xff;
f = vv & 0xff;
aa = acos_table[i];
aa = aa + (((acos_table[i + 1] - aa) * f) >> 8);
if (v < 0)
aa = 0x8000 - aa;
return aa;
}
// given cos & sin of an angle, return that angle.
// parms need not be normalized, that is, the ratio of the parms cos/sin must
// equal the ratio of the actual cos & sin for the result angle, but the parms
// need not be the actual cos & sin.
// NOTE: this is different from the standard C atan2, since it is left-handed.
angle FixAtan2(float cos, float sin) {
float q, m;
angle t;
// find smaller of two
q = (sin * sin) + (cos * cos);
m = sqrt(q);
if (m == 0)
return 0;
if (fabs(sin) < fabs(cos)) {
// sin is smaller, use arcsin
t = FixAsin(sin / m);
if (cos < 0)
t = 0x8000 - t;
return t;
} else {
t = FixAcos(cos / m);
if (sin < 0)
t = F1_0 - t;
return t;
}
}
// Does a ceiling operation on a fixed number
fix FixCeil(fix num) {
int int_num;
fix new_num;
int_num = FixToInt(num);
if (num & 0xFFFF) {
new_num = IntToFix(int_num + 1);
return new_num;
}
new_num = IntToFix(int_num);
return (new_num);
}
// Floors a fixed number
fix FixFloor(fix num) {
int int_num = FixToInt(num);
return (IntToFix(int_num));
}
// use this instead of:
// for: (int)floor(x+0.5f) use FloatRound(x)
// (int)ceil(x-0.5f) use FloatRound(x)
// (int)floor(x-0.5f) use FloatRound(x-1.0f)
// (int)floor(x) use FloatRound(x-0.5f)
// for values in the range -2048 to 2048
int FloatRound(float x);
angle FixAtan2(float cos, float sin);
angle FixAsin(float v);
angle FixAcos(float v);
// Does a ceiling operation on a fixed number
fix FixCeil(fix num);
// Floors a fixed number
fix FixFloor(fix num);
// Used for debugging. It is used in printf's so we do not have to write out the structure 3 times
// to print all the coordinates.
#define XYZ(v) (v)->x, (v)->y, (v)->z
extern const matrix Identity_matrix;
// Given a matrix, makes it an identity matrix
extern void vm_MakeIdentity(matrix *);
// Set a vector to {0,0,0}
extern void vm_MakeZero(vector *v);
// Set an angvec to {0,0,0}
extern void vm_MakeZero(angvec *a);
// Rotates a vector thru a matrix
extern void vm_MatrixMulVector(vector *, vector *, matrix *);
// Multiply a vector times the transpose of a matrix
void vm_VectorMulTMatrix(vector *result, vector *v, matrix *m);
// Multiplies 2 3x3 matrixes, returning the result in first argument
extern void vm_MatrixMul(matrix *, matrix *, matrix *);
// Multiply a matrix times the transpose of a matrix
void vm_MatrixMulTMatrix(matrix *dest, matrix *src0, matrix *src1);
// Computes all math look up tables, must be called before any vector stuff is used
extern void vm_InitMathTables();
// Given a vector, returns the magnitude. Uses sqrt so it's slow
extern float vm_GetMagnitude(vector *);
// Given a vector, returns an approximation of the magnitude
extern float vm_GetMagnitudeFast(vector *);
// Returns the dot product of the two given vectors
extern float vm_DotProduct(vector *, vector *);
// Returns a perpendicular vector to the two given vectors
extern void vm_CrossProduct(vector *, vector *, vector *);
// Returns the difference between two vectors
extern void vm_SubVectors(vector *, const vector *, const vector *);
// Returns adds two vectors, returns result in first arg
extern void vm_AddVectors(vector *, vector *, vector *);
// Inits vector to 0,0,0
extern void vm_CenterVector(vector *);
// Given a vector, divides second arg by vector components
extern void vm_AverageVector(vector *, int);
// Normalizes a vector
// Returns the magnitude before normalization
extern float vm_VectorNormalize(vector *);
// Scales second arg vector by 3rd arg, placing result in first arg
extern void vm_ScaleVector(vector *, vector *, float);
// Scales all components of vector v by value s adds the result to p and stores result in vector d
extern void vm_ScaleAddVector(vector *d, vector *p, vector *v, float s);
// Divides second vector components by 3rd arg, placing result in first arg. Useful for parametric lines
extern void vm_DivVector(vector *, vector *, float);
// Same as VectorNormalize, but uses approximation
extern float vm_VectorNormalizeFast(vector *);
// Clears a matrix to zero
extern void vm_ClearMatrix(matrix *);
// Transposes a matrix in place
extern void vm_TransposeMatrix(matrix *);
// Given 3 angles (p,h,b), makes a rotation matrix out of them
extern void vm_AnglesToMatrix(matrix *, angle p, angle h, angle b);
// Ensure that a matrix is orthogonal
void vm_Orthogonalize(matrix *m);
// Compute a matrix from one or two vectors. At least one and at most two vectors must/can be specified.
// Parameters: m - filled in with the orienation matrix
// fvec,uvec,rvec - pointers to vectors that determine the matrix.
// One or two of these must be specified, with the other(s) set to NULL.
void vm_VectorToMatrix(matrix *m, vector *fvec, vector *uvec = NULL, vector *rvec = NULL);
// Computes a matrix from a vector and and angle of rotation around that vector
// Parameters: m - filled in with the computed matrix
// v - the forward vector of the new matrix
// a - the angle of rotation around the forward vector
void vm_VectorAngleToMatrix(matrix *m, vector *v, angle a);
// Given an angle, places sin in 2nd arg, cos in 3rd. Either can be null
extern void vm_SinCos(angle, float *, float *);
// Given x1,y1,x2,y2, returns the slope
extern float vm_GetSlope(float, float, float, float);
// Calculates the perpendicular vector given three points
// Parms: n - the computed perp vector (filled in)
// v0,v1,v2 - three clockwise vertices
void vm_GetPerp(vector *n, vector *a, vector *b, vector *c);
// Calculates the (normalized) surface normal give three points
// Parms: n - the computed surface normal (filled in)
// v0,v1,v2 - three clockwise vertices
// Returns the magnitude of the normal before it was normalized.
// The bigger this value, the better the normal.
float vm_GetNormal(vector *n, vector *v0, vector *v1, vector *v2);
#define vm_GetSurfaceNormal vm_GetNormal
// Gets the distances (magnitude) between two vectors. Slow.
extern float vm_VectorDistance(const vector *a, const vector *b);
// Gets the approx distances (magnitude) between two vectors. Faster.
extern float vm_VectorDistanceQuick(vector *a, vector *b);
// Computes a normalized direction vector between two points
// Parameters: dest - filled in with the normalized direction vector
// start,end - the start and end points used to calculate the vector
// Returns: the distance between the two input points
float vm_GetNormalizedDir(vector *dest, vector *end, vector *start);
// Returns a normalized direction vector between two points
// Uses sloppier magnitude, less precise
float vm_GetNormalizedDirFast(vector *dest, vector *end, vector *start);
// extract angles from a matrix
angvec *vm_ExtractAnglesFromMatrix(angvec *a, matrix *m);
// returns the angle between two vectors and a forward vector
angle vm_DeltaAngVec(vector *v0, vector *v1, vector *fvec);
// returns the angle between two normalized vectors and a forward vector
angle vm_DeltaAngVecNorm(vector *v0, vector *v1, vector *fvec);
// Computes the distance from a point to a plane.
// Parms: checkp - the point to check
// Parms: norm - the (normalized) surface normal of the plane
// planep - a point on the plane
// Returns: The signed distance from the plane; negative dist is on the back of the plane
float vm_DistToPlane(vector *checkp, vector *norm, vector *planep);
// returns the value of a determinant
float calc_det_value(matrix *det);
void vm_MakeInverseMatrix(matrix *dest);
void vm_SinCosToMatrix(matrix *m, float sinp, float cosp, float sinb, float cosb, float sinh, float cosh);
// Gets the real center of a polygon
float vm_GetCentroid(vector *centroid, vector *src, int nv);
// retrieves a random vector in values -RAND_MAX/2 to RAND_MAX/2
void vm_MakeRandomVector(vector *vec);
// Given a set of points, computes the minimum bounding sphere of those points
float vm_ComputeBoundingSphere(vector *center, vector *vecs, int num_verts);
// Gets the real center of a polygon, but uses fast magnitude calculation
// Returns the size of the passed in stuff
float vm_GetCentroidFast(vector *centroid, vector *src, int nv);
// Here are the C++ operator overloads -- they do as expected
extern matrix operator*(matrix src0, matrix src1);
extern matrix operator*=(matrix &src0, matrix src1);
void vm_AverageVector(vector *a, int num) {
// Averages a vector. ie divides each component of vector a by num
// assert (num!=0);
a->x = a->x / (float)num;
a->y = a->y / (float)num;
a->z = a->z / (float)num;
}
void vm_AddVectors(vector *result, vector *a, vector *b) {
// Adds two vectors. Either source can equal dest
result->x = a->x + b->x;
result->y = a->y + b->y;
result->z = a->z + b->z;
}
void vm_SubVectors(vector *result, const vector *a, const vector *b) {
// Subtracts second vector from first. Either source can equal dest
result->x = a->x - b->x;
result->y = a->y - b->y;
result->z = a->z - b->z;
}
float vm_VectorDistance(const vector *a, const vector *b) {
// Given two vectors, returns the distance between them
vector dest;
float dist;
vm_SubVectors(&dest, a, b);
dist = vm_GetMagnitude(&dest);
return dist;
}
float vm_VectorDistanceQuick(vector *a, vector *b) {
// Given two vectors, returns the distance between them
vector dest;
float dist;
vm_SubVectors(&dest, a, b);
dist = vm_GetMagnitudeFast(&dest);
return dist;
}
// Calculates the perpendicular vector given three points
// Parms: n - the computed perp vector (filled in)
// v0,v1,v2 - three clockwise vertices
void vm_GetPerp(vector *n, vector *a, vector *b, vector *c) {
// Given 3 vertices, return the surface normal in n
// IMPORTANT: B must be the 'corner' vertex
vector x, y;
vm_SubVectors(&x, b, a);
vm_SubVectors(&y, c, b);
vm_CrossProduct(n, &x, &y);
}
// Calculates the (normalized) surface normal give three points
// Parms: n - the computed surface normal (filled in)
// v0,v1,v2 - three clockwise vertices
// Returns the magnitude of the normal before it was normalized.
// The bigger this value, the better the normal.
float vm_GetNormal(vector *n, vector *v0, vector *v1, vector *v2) {
vm_GetPerp(n, v0, v1, v2);
return vm_VectorNormalize(n);
}
// Does a simple dot product calculation
float vm_DotProduct(vector *u, vector *v) { return (u->x * v->x) + (u->y * v->y) + (u->z * v->z); }
// Scales all components of vector v by value s and stores result in vector d
// dest can equal source
void vm_ScaleVector(vector *d, vector *v, float s) {
d->x = (v->x * s);
d->y = (v->y * s);
d->z = (v->z * s);
}
void vm_ScaleAddVector(vector *d, vector *p, vector *v, float s) {
// Scales all components of vector v by value s
// adds the result to p and stores result in vector d
// dest can equal source
d->x = p->x + (v->x * s);
d->y = p->y + (v->y * s);
d->z = p->z + (v->z * s);
}
void vm_DivVector(vector *dest, vector *src, float n) {
// Divides a vector into n portions
// Dest can equal src
// assert (n!=0);
dest->x = src->x / n;
dest->y = src->y / n;
dest->z = src->z / n;
}
void vm_CrossProduct(vector *dest, vector *u, vector *v) {
// Computes a cross product between u and v, returns the result
// in Normal. Dest cannot equal source.
dest->x = (u->y * v->z) - (u->z * v->y);
dest->y = (u->z * v->x) - (u->x * v->z);
dest->z = (u->x * v->y) - (u->y * v->x);
}
// Normalize a vector.
// Returns: the magnitude before normalization
float vm_VectorNormalize(vector *a) {
float mag;
mag = vm_GetMagnitude(a);
if (mag > 0)
*a /= mag;
else {
*a = Zero_vector;
a->x = 1.0;
mag = 0.0f;
}
return mag;
}
float vm_GetMagnitude(vector *a) {
float f;
f = (a->x * a->x) + (a->y * a->y) + (a->z * a->z);
return (sqrt(f));
}
void vm_ClearMatrix(matrix *dest) { memset(dest, 0, sizeof(matrix)); }
void vm_MakeIdentity(matrix *dest) {
memset(dest, 0, sizeof(matrix));
dest->rvec.x = dest->uvec.y = dest->fvec.z = 1.0;
}
void vm_MakeInverseMatrix(matrix *dest) {
memset((void *)dest, 0, sizeof(matrix));
dest->rvec.x = dest->uvec.y = dest->fvec.z = -1.0;
}
void vm_TransposeMatrix(matrix *m) {
// Transposes a matrix in place
float t;
t = m->uvec.x;
m->uvec.x = m->rvec.y;
m->rvec.y = t;
t = m->fvec.x;
m->fvec.x = m->rvec.z;
m->rvec.z = t;
t = m->fvec.y;
m->fvec.y = m->uvec.z;
m->uvec.z = t;
}
void vm_MatrixMulVector(vector *result, vector *v, matrix *m) {
// Rotates a vector thru a matrix
// assert(result != v);
result->x = *v * m->rvec;
result->y = *v * m->uvec;
result->z = *v * m->fvec;
}
// Multiply a vector times the transpose of a matrix
void vm_VectorMulTMatrix(vector *result, vector *v, matrix *m) {
// assert(result != v);
result->x = vm_Dot3Vector(m->rvec.x, m->uvec.x, m->fvec.x, v);
result->y = vm_Dot3Vector(m->rvec.y, m->uvec.y, m->fvec.y, v);
result->z = vm_Dot3Vector(m->rvec.z, m->uvec.z, m->fvec.z, v);
}
void vm_MatrixMul(matrix *dest, matrix *src0, matrix *src1) {
// For multiplying two 3x3 matrices together
// assert((dest != src0) && (dest != src1));
dest->rvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->rvec);
dest->uvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->uvec);
dest->fvec.x = vm_Dot3Vector(src0->rvec.x, src0->uvec.x, src0->fvec.x, &src1->fvec);
dest->rvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->rvec);
dest->uvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->uvec);
dest->fvec.y = vm_Dot3Vector(src0->rvec.y, src0->uvec.y, src0->fvec.y, &src1->fvec);
dest->rvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->rvec);
dest->uvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->uvec);
dest->fvec.z = vm_Dot3Vector(src0->rvec.z, src0->uvec.z, src0->fvec.z, &src1->fvec);
}
// Multiply a matrix times the transpose of a matrix
void vm_MatrixMulTMatrix(matrix *dest, matrix *src0, matrix *src1) {
// For multiplying two 3x3 matrices together
// assert((dest != src0) && (dest != src1));
dest->rvec.x = src0->rvec.x * src1->rvec.x + src0->uvec.x * src1->uvec.x + src0->fvec.x * src1->fvec.x;
dest->uvec.x = src0->rvec.x * src1->rvec.y + src0->uvec.x * src1->uvec.y + src0->fvec.x * src1->fvec.y;
dest->fvec.x = src0->rvec.x * src1->rvec.z + src0->uvec.x * src1->uvec.z + src0->fvec.x * src1->fvec.z;
dest->rvec.y = src0->rvec.y * src1->rvec.x + src0->uvec.y * src1->uvec.x + src0->fvec.y * src1->fvec.x;
dest->uvec.y = src0->rvec.y * src1->rvec.y + src0->uvec.y * src1->uvec.y + src0->fvec.y * src1->fvec.y;
dest->fvec.y = src0->rvec.y * src1->rvec.z + src0->uvec.y * src1->uvec.z + src0->fvec.y * src1->fvec.z;
dest->rvec.z = src0->rvec.z * src1->rvec.x + src0->uvec.z * src1->uvec.x + src0->fvec.z * src1->fvec.x;
dest->uvec.z = src0->rvec.z * src1->rvec.y + src0->uvec.z * src1->uvec.y + src0->fvec.z * src1->fvec.y;
dest->fvec.z = src0->rvec.z * src1->rvec.z + src0->uvec.z * src1->uvec.z + src0->fvec.z * src1->fvec.z;
}
matrix operator*(matrix src0, matrix src1) {
// For multiplying two 3x3 matrices together
matrix dest;
dest.rvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.rvec);
dest.uvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.uvec);
dest.fvec.x = vm_Dot3Vector(src0.rvec.x, src0.uvec.x, src0.fvec.x, &src1.fvec);
dest.rvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.rvec);
dest.uvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.uvec);
dest.fvec.y = vm_Dot3Vector(src0.rvec.y, src0.uvec.y, src0.fvec.y, &src1.fvec);
dest.rvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.rvec);
dest.uvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.uvec);
dest.fvec.z = vm_Dot3Vector(src0.rvec.z, src0.uvec.z, src0.fvec.z, &src1.fvec);
return dest;
}
matrix operator*=(matrix &src0, matrix src1) { return (src0 = src0 * src1); }
// Computes a normalized direction vector between two points
// Parameters: dest - filled in with the normalized direction vector
// start,end - the start and end points used to calculate the vector
// Returns: the distance between the two input points
float vm_GetNormalizedDir(vector *dest, vector *end, vector *start) {
vm_SubVectors(dest, end, start);
return vm_VectorNormalize(dest);
}
// Returns a normalized direction vector between two points
// Just like vm_GetNormalizedDir(), but uses sloppier magnitude, less precise
// Parameters: dest - filled in with the normalized direction vector
// start,end - the start and end points used to calculate the vector
// Returns: the distance between the two input points
float vm_GetNormalizedDirFast(vector *dest, vector *end, vector *start) {
vm_SubVectors(dest, end, start);
return vm_VectorNormalizeFast(dest);
}
float vm_GetMagnitudeFast(vector *v) {
float a, b, c, bc;
a = fabs(v->x);
b = fabs(v->y);
c = fabs(v->z);
if (a < b) {
float t = a;
a = b;
b = t;
}
if (b < c) {
float t = b;
b = c;
c = t;
if (a < b) {
float t = a;
a = b;
b = t;
}
}
bc = (b / 4) + (c / 8);
return a + bc + (bc / 2);
}
// Normalize a vector using an approximation of the magnitude
// Returns: the magnitude before normalization
float vm_VectorNormalizeFast(vector *a) {
float mag;
mag = vm_GetMagnitudeFast(a);
if (mag == 0.0) {
a->x = a->y = a->z = 0.0;
return 0;
}
a->x = (a->x / mag);
a->y = (a->y / mag);
a->z = (a->z / mag);
return mag;
}
// Computes the distance from a point to a plane.
// Parms: checkp - the point to check
// Parms: norm - the (normalized) surface normal of the plane
// planep - a point on the plane
// Returns: The signed distance from the plane; negative dist is on the back of the plane
float vm_DistToPlane(vector *checkp, vector *norm, vector *planep) {
vector t;
t = *checkp - *planep;
return t * *norm;
}
float vm_GetSlope(float x1, float y1, float x2, float y2) {
// returns the slope of a line
float r;
if (y2 - y1 == 0)
return (0.0);
r = (x2 - x1) / (y2 - y1);
return (r);
}
void vm_SinCosToMatrix(matrix *m, float sinp, float cosp, float sinb, float cosb, float sinh, float cosh) {
float sbsh, cbch, cbsh, sbch;
sbsh = (sinb * sinh);
cbch = (cosb * cosh);
cbsh = (cosb * sinh);
sbch = (sinb * cosh);
m->rvec.x = cbch + (sinp * sbsh); // m1
m->uvec.z = sbsh + (sinp * cbch); // m8
m->uvec.x = (sinp * cbsh) - sbch; // m2
m->rvec.z = (sinp * sbch) - cbsh; // m7
m->fvec.x = (sinh * cosp); // m3
m->rvec.y = (sinb * cosp); // m4
m->uvec.y = (cosb * cosp); // m5
m->fvec.z = (cosh * cosp); // m9
m->fvec.y = -sinp; // m6
}
void vm_AnglesToMatrix(matrix *m, angle p, angle h, angle b) {
float sinp, cosp, sinb, cosb, sinh, cosh;
sinp = FixSin(p);
cosp = FixCos(p);
sinb = FixSin(b);
cosb = FixCos(b);
sinh = FixSin(h);
cosh = FixCos(h);
vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh);
}
// Computes a matrix from a vector and and angle of rotation around that vector
// Parameters: m - filled in with the computed matrix
// v - the forward vector of the new matrix
// a - the angle of rotation around the forward vector
void vm_VectorAngleToMatrix(matrix *m, vector *v, angle a) {
float sinb, cosb, sinp, cosp, sinh, cosh;
sinb = FixSin(a);
cosb = FixCos(a);
sinp = -v->y;
cosp = sqrt(1.0 - (sinp * sinp));
if (cosp != 0.0) {
sinh = v->x / cosp;
cosh = v->z / cosp;
} else {
sinh = 0;
cosh = 1.0;
}
vm_SinCosToMatrix(m, sinp, cosp, sinb, cosb, sinh, cosh);
}
// Ensure that a matrix is orthogonal
void vm_Orthogonalize(matrix *m) {
// Normalize forward vector
if (vm_VectorNormalize(&m->fvec) == 0) {
return;
}
// Generate right vector from forward and up vectors
m->rvec = m->uvec ^ m->fvec;
// Normaize new right vector
if (vm_VectorNormalize(&m->rvec) == 0) {
vm_VectorToMatrix(m, &m->fvec, NULL, NULL); // error, so generate from forward vector only
return;
}
// Recompute up vector, in case it wasn't entirely perpendiclar
m->uvec = m->fvec ^ m->rvec;
}
// do the math for vm_VectorToMatrix()
void DoVectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) {
vector *xvec = &m->rvec, *yvec = &m->uvec, *zvec = &m->fvec;
// ASSERT(fvec != NULL);
*zvec = *fvec;
if (vm_VectorNormalize(zvec) == 0) {
return;
}
if (uvec == NULL) {
if (rvec == NULL) { // just forward vec
bad_vector2:;
if (zvec->x == 0 && zvec->z == 0) { // forward vec is straight up or down
m->rvec.x = 1.0;
m->uvec.z = (zvec->y < 0) ? 1.0 : -1.0;
m->rvec.y = m->rvec.z = m->uvec.x = m->uvec.y = 0;
} else { // not straight up or down
xvec->x = zvec->z;
xvec->y = 0;
xvec->z = -zvec->x;
vm_VectorNormalize(xvec);
*yvec = *zvec ^ *xvec;
}
} else { // use right vec
*xvec = *rvec;
if (vm_VectorNormalize(xvec) == 0)
goto bad_vector2;
*yvec = *zvec ^ *xvec;
// normalize new perpendicular vector
if (vm_VectorNormalize(yvec) == 0)
goto bad_vector2;
// now recompute right vector, in case it wasn't entirely perpendiclar
*xvec = *yvec ^ *zvec;
}
} else { // use up vec
*yvec = *uvec;
if (vm_VectorNormalize(yvec) == 0)
goto bad_vector2;
*xvec = *yvec ^ *zvec;
// normalize new perpendicular vector
if (vm_VectorNormalize(xvec) == 0)
goto bad_vector2;
// now recompute up vector, in case it wasn't entirely perpendiclar
*yvec = *zvec ^ *xvec;
}
}
// Compute a matrix from one or two vectors. At least one and at most two vectors must/can be specified.
// Parameters: m - filled in with the orienation matrix
// fvec,uvec,rvec - pointers to vectors that determine the matrix.
// One or two of these must be specified, with the other(s) set to NULL.
void vm_VectorToMatrix(matrix *m, vector *fvec, vector *uvec, vector *rvec) {
if (!fvec) { // no forward vector. Use up and/or right vectors.
matrix tmatrix;
if (uvec) { // got up vector. use up and, if specified, right vectors.
DoVectorToMatrix(&tmatrix, uvec, NULL, rvec);
m->fvec = -tmatrix.uvec;
m->uvec = tmatrix.fvec;
m->rvec = tmatrix.rvec;
return;
} else { // no up vector. Use right vector only.
// ASSERT(rvec);
DoVectorToMatrix(&tmatrix, rvec, NULL, NULL);
m->fvec = -tmatrix.rvec;
m->uvec = tmatrix.uvec;
m->rvec = tmatrix.fvec;
return;
}
} else {
// ASSERT(! (uvec && rvec)); //can only have 1 or 2 vectors specified
DoVectorToMatrix(m, fvec, uvec, rvec);
}
}
void vm_SinCos(unsigned short a, float *s, float *c) {
if (s)
*s = FixSin(a);
if (c)
*c = FixCos(a);
}
// extract angles from a matrix
angvec *vm_ExtractAnglesFromMatrix(angvec *a, matrix *m) {
float sinh, cosh, cosp;
if (m->fvec.x == 0 && m->fvec.z == 0) // zero head
a->h = 0;
else
a->h = FixAtan2(m->fvec.z, m->fvec.x);
sinh = FixSin(a->h);
cosh = FixCos(a->h);
if (fabs(sinh) > fabs(cosh)) // sine is larger, so use it
cosp = (m->fvec.x / sinh);
else // cosine is larger, so use it
cosp = (m->fvec.z / cosh);
if (cosp == 0 && m->fvec.y == 0)
a->p = 0;
else
a->p = FixAtan2(cosp, -m->fvec.y);
if (cosp == 0) // the cosine of pitch is zero. we're pitched straight up. say no bank
a->b = 0;
else {
float sinb, cosb;
sinb = (m->rvec.y / cosp);
cosb = (m->uvec.y / cosp);
if (sinb == 0 && cosb == 0)
a->b = 0;
else
a->b = FixAtan2(cosb, sinb);
}
return a;
}
// returns the value of a determinant
float calc_det_value(matrix *det) {
return det->rvec.x * det->uvec.y * det->fvec.z - det->rvec.x * det->uvec.z * det->fvec.y -
det->rvec.y * det->uvec.x * det->fvec.z + det->rvec.y * det->uvec.z * det->fvec.x +
det->rvec.z * det->uvec.x * det->fvec.y - det->rvec.z * det->uvec.y * det->fvec.x;
}
// computes the delta angle between two vectors.
// vectors need not be normalized. if they are, call vm_vec_delta_ang_norm()
// the forward vector (third parameter) can be NULL, in which case the absolute
// value of the angle in returned. Otherwise the angle around that vector is
// returned.
angle vm_DeltaAngVec(vector *v0, vector *v1, vector *fvec) {
vector t0, t1;
t0 = *v0;
t1 = *v1;
vm_VectorNormalize(&t0);
vm_VectorNormalize(&t1);
return vm_DeltaAngVecNorm(&t0, &t1, fvec);
}
// computes the delta angle between two normalized vectors.
angle vm_DeltaAngVecNorm(vector *v0, vector *v1, vector *fvec) {
angle a;
a = FixAcos(vm_DotProduct(v0, v1));
if (fvec) {
vector t;
vm_CrossProduct(&t, v0, v1);
if (vm_DotProduct(&t, fvec) < 0)
a = -a;
}
return a;
}
// Gets the real center of a polygon
// Returns the size of the passed in stuff
float vm_GetCentroid(vector *centroid, vector *src, int nv) {
// ASSERT (nv>2);
vector normal;
float area, total_area;
int i;
vector tmp_center;
vm_MakeZero(centroid);
// First figure out the total area of this polygon
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
total_area = (vm_GetMagnitude(&normal) / 2);
for (i = 2; i < nv - 1; i++) {
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
area = (vm_GetMagnitude(&normal) / 2);
total_area += area;
}
// Now figure out how much weight each triangle represents to the overall
// polygon
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
area = (vm_GetMagnitude(&normal) / 2);
// Get the center of the first polygon
vm_MakeZero(&tmp_center);
for (i = 0; i < 3; i++) {
tmp_center += src[i];
}
tmp_center /= 3;
*centroid += (tmp_center * (area / total_area));
// Now do the same for the rest
for (i = 2; i < nv - 1; i++) {
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
area = (vm_GetMagnitude(&normal) / 2);
vm_MakeZero(&tmp_center);
tmp_center += src[0];
tmp_center += src[i];
tmp_center += src[i + 1];
tmp_center /= 3;
*centroid += (tmp_center * (area / total_area));
}
return total_area;
}
// Gets the real center of a polygon, but uses fast magnitude calculation
// Returns the size of the passed in stuff
float vm_GetCentroidFast(vector *centroid, vector *src, int nv) {
// ASSERT (nv>2);
vector normal;
float area, total_area;
int i;
vector tmp_center;
vm_MakeZero(centroid);
// First figure out the total area of this polygon
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
total_area = (vm_GetMagnitudeFast(&normal) / 2);
for (i = 2; i < nv - 1; i++) {
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
area = (vm_GetMagnitudeFast(&normal) / 2);
total_area += area;
}
// Now figure out how much weight each triangle represents to the overall
// polygon
vm_GetPerp(&normal, &src[0], &src[1], &src[2]);
area = (vm_GetMagnitudeFast(&normal) / 2);
// Get the center of the first polygon
vm_MakeZero(&tmp_center);
for (i = 0; i < 3; i++) {
tmp_center += src[i];
}
tmp_center /= 3;
*centroid += (tmp_center * (area / total_area));
// Now do the same for the rest
for (i = 2; i < nv - 1; i++) {
vm_GetPerp(&normal, &src[0], &src[i], &src[i + 1]);
area = (vm_GetMagnitudeFast(&normal) / 2);
vm_MakeZero(&tmp_center);
tmp_center += src[0];
tmp_center += src[i];
tmp_center += src[i + 1];
tmp_center /= 3;
*centroid += (tmp_center * (area / total_area));
}
return total_area;
}
// creates a completely random, non-normalized vector with a range of values from -1023 to +1024 values)
void vm_MakeRandomVector(vector *vec) {
vec->x = rand() - RAND_MAX / 2;
vec->y = rand() - RAND_MAX / 2;
vec->z = rand() - RAND_MAX / 2;
}
// Given a set of points, computes the minimum bounding sphere of those points
float vm_ComputeBoundingSphere(vector *center, vector *vecs, int num_verts) {
// This algorithm is from Graphics Gems I. There's a better algorithm in Graphics Gems III that
// we should probably implement sometime.
vector *min_x, *max_x, *min_y, *max_y, *min_z, *max_z, *vp;
float dx, dy, dz;
float rad, rad2;
int i;
// Initialize min, max vars
min_x = max_x = min_y = max_y = min_z = max_z = &vecs[0];
// First, find the points with the min & max x,y, & z coordinates
for (i = 0, vp = vecs; i < num_verts; i++, vp++) {
if (vp->x < min_x->x)
min_x = vp;
if (vp->x > max_x->x)
max_x = vp;
if (vp->y < min_y->y)
min_y = vp;
if (vp->y > max_y->y)
max_y = vp;
if (vp->z < min_z->z)
min_z = vp;
if (vp->z > max_z->z)
max_z = vp;
}
// Calculate initial sphere
dx = vm_VectorDistance(min_x, max_x);
dy = vm_VectorDistance(min_y, max_y);
dz = vm_VectorDistance(min_z, max_z);
if (dx > dy)
if (dx > dz) {
*center = (*min_x + *max_x) / 2;
rad = dx / 2;
} else {
*center = (*min_z + *max_z) / 2;
rad = dz / 2;
}
else if (dy > dz) {
*center = (*min_y + *max_y) / 2;
rad = dy / 2;
} else {
*center = (*min_z + *max_z) / 2;
rad = dz / 2;
}
// Go through all points and look for ones that don't fit
rad2 = rad * rad;
for (i = 0, vp = vecs; i < num_verts; i++, vp++) {
vector delta;
float t2;
delta = *vp - *center;
t2 = delta.x * delta.x + delta.y * delta.y + delta.z * delta.z;
// If point outside, make the sphere bigger
if (t2 > rad2) {
float t;
t = sqrt(t2);
rad = (rad + t) / 2;
rad2 = rad * rad;
*center += delta * (t - rad) / t;
}
}
// We're done
return rad;
}
#endif