mirror of
https://github.com/Ryujinx/Ryujinx.git
synced 2025-01-23 16:48:29 +00:00
c1bdf19061
* Implement ARM32 memory instructions: LDM, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, STM, STR, STRB, STRD, STRH (immediate and register + immediate variants), implement CMP (immediate and register shifted by immediate variants) * Rename some opcode classes and flag masks for consistency * Fix a few suboptimal ARM32 codegen issues, only loads should be considered on decoder when checking if Rt == PC, and only NZCV flags should be considered for comparison optimizations * Take into account Rt2 for LDRD instructions aswell when checking if the instruction changes PC * Re-align arm32 instructions on the opcode table
294 lines
9.8 KiB
C#
294 lines
9.8 KiB
C#
using ChocolArm64.Instructions;
|
|
using ChocolArm64.Memory;
|
|
using ChocolArm64.State;
|
|
using System;
|
|
using System.Collections.Concurrent;
|
|
using System.Collections.Generic;
|
|
using System.Reflection.Emit;
|
|
|
|
namespace ChocolArm64.Decoders
|
|
{
|
|
static class Decoder
|
|
{
|
|
private delegate object OpActivator(Inst inst, long position, int opCode);
|
|
|
|
private static ConcurrentDictionary<Type, OpActivator> _opActivators;
|
|
|
|
static Decoder()
|
|
{
|
|
_opActivators = new ConcurrentDictionary<Type, OpActivator>();
|
|
}
|
|
|
|
public static Block DecodeBasicBlock(MemoryManager memory, long start, ExecutionMode mode)
|
|
{
|
|
Block block = new Block(start);
|
|
|
|
FillBlock(memory, mode, block);
|
|
|
|
return block;
|
|
}
|
|
|
|
public static Block DecodeSubroutine(
|
|
TranslatorCache cache,
|
|
MemoryManager memory,
|
|
long start,
|
|
ExecutionMode mode)
|
|
{
|
|
Dictionary<long, Block> visited = new Dictionary<long, Block>();
|
|
Dictionary<long, Block> visitedEnd = new Dictionary<long, Block>();
|
|
|
|
Queue<Block> blocks = new Queue<Block>();
|
|
|
|
Block Enqueue(long position)
|
|
{
|
|
if (!visited.TryGetValue(position, out Block output))
|
|
{
|
|
output = new Block(position);
|
|
|
|
blocks.Enqueue(output);
|
|
|
|
visited.Add(position, output);
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
Block entry = Enqueue(start);
|
|
|
|
while (blocks.Count > 0)
|
|
{
|
|
Block current = blocks.Dequeue();
|
|
|
|
FillBlock(memory, mode, current);
|
|
|
|
//Set child blocks. "Branch" is the block the branch instruction
|
|
//points to (when taken), "Next" is the block at the next address,
|
|
//executed when the branch is not taken. For Unconditional Branches
|
|
//(except BL/BLR that are sub calls) or end of executable, Next is null.
|
|
if (current.OpCodes.Count > 0)
|
|
{
|
|
bool hasCachedSub = false;
|
|
|
|
OpCode64 lastOp = current.GetLastOp();
|
|
|
|
if (lastOp is IOpCodeBImm op)
|
|
{
|
|
if (op.Emitter == InstEmit.Bl)
|
|
{
|
|
hasCachedSub = cache.HasSubroutine(op.Imm);
|
|
}
|
|
else
|
|
{
|
|
current.Branch = Enqueue(op.Imm);
|
|
}
|
|
}
|
|
|
|
if (!IsUnconditionalBranch(lastOp) || hasCachedSub)
|
|
{
|
|
current.Next = Enqueue(current.EndPosition);
|
|
}
|
|
}
|
|
|
|
//If we have on the graph two blocks with the same end position,
|
|
//then we need to split the bigger block and have two small blocks,
|
|
//the end position of the bigger "Current" block should then be == to
|
|
//the position of the "Smaller" block.
|
|
while (visitedEnd.TryGetValue(current.EndPosition, out Block smaller))
|
|
{
|
|
if (current.Position > smaller.Position)
|
|
{
|
|
Block temp = smaller;
|
|
|
|
smaller = current;
|
|
current = temp;
|
|
}
|
|
|
|
current.EndPosition = smaller.Position;
|
|
current.Next = smaller;
|
|
current.Branch = null;
|
|
|
|
current.OpCodes.RemoveRange(
|
|
current.OpCodes.Count - smaller.OpCodes.Count,
|
|
smaller.OpCodes.Count);
|
|
|
|
visitedEnd[smaller.EndPosition] = smaller;
|
|
}
|
|
|
|
visitedEnd.Add(current.EndPosition, current);
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
private static void FillBlock(MemoryManager memory, ExecutionMode mode, Block block)
|
|
{
|
|
long position = block.Position;
|
|
|
|
OpCode64 opCode;
|
|
|
|
do
|
|
{
|
|
opCode = DecodeOpCode(memory, position, mode);
|
|
|
|
block.OpCodes.Add(opCode);
|
|
|
|
position += opCode.OpCodeSizeInBytes;
|
|
}
|
|
while (!(IsBranch(opCode) || IsException(opCode)));
|
|
|
|
block.EndPosition = position;
|
|
}
|
|
|
|
private static bool IsBranch(OpCode64 opCode)
|
|
{
|
|
return opCode is OpCodeBImm64 ||
|
|
opCode is OpCodeBReg64 || IsAarch32Branch(opCode);
|
|
}
|
|
|
|
private static bool IsUnconditionalBranch(OpCode64 opCode)
|
|
{
|
|
return opCode is OpCodeBImmAl64 ||
|
|
opCode is OpCodeBReg64 || IsAarch32UnconditionalBranch(opCode);
|
|
}
|
|
|
|
private static bool IsAarch32UnconditionalBranch(OpCode64 opCode)
|
|
{
|
|
if (!(opCode is OpCode32 op))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
//Note: On ARM32, most instructions have conditional execution,
|
|
//so there's no "Always" (unconditional) branch like on ARM64.
|
|
//We need to check if the condition is "Always" instead.
|
|
return IsAarch32Branch(op) && op.Cond >= Condition.Al;
|
|
}
|
|
|
|
private static bool IsAarch32Branch(OpCode64 opCode)
|
|
{
|
|
//Note: On ARM32, most ALU operations can write to R15 (PC),
|
|
//so we must consider such operations as a branch in potential aswell.
|
|
if (opCode is IOpCode32Alu opAlu && opAlu.Rd == RegisterAlias.Aarch32Pc)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
//Same thing for memory operations. We have the cases where PC is a target
|
|
//register (Rt == 15 or (mask & (1 << 15)) != 0), and cases where there is
|
|
//a write back to PC (wback == true && Rn == 15), however the later may
|
|
//be "undefined" depending on the CPU, so compilers should not produce that.
|
|
if (opCode is IOpCode32Mem || opCode is IOpCode32MemMult)
|
|
{
|
|
int rt, rn;
|
|
|
|
bool wBack, isLoad;
|
|
|
|
if (opCode is IOpCode32Mem opMem)
|
|
{
|
|
rt = opMem.Rt;
|
|
rn = opMem.Rn;
|
|
wBack = opMem.WBack;
|
|
isLoad = opMem.IsLoad;
|
|
|
|
//For the dual load, we also need to take into account the
|
|
//case were Rt2 == 15 (PC).
|
|
if (rt == 14 && opMem.Emitter == InstEmit32.Ldrd)
|
|
{
|
|
rt = RegisterAlias.Aarch32Pc;
|
|
}
|
|
}
|
|
else if (opCode is IOpCode32MemMult opMemMult)
|
|
{
|
|
const int pcMask = 1 << RegisterAlias.Aarch32Pc;
|
|
|
|
rt = (opMemMult.RegisterMask & pcMask) != 0 ? RegisterAlias.Aarch32Pc : 0;
|
|
rn = opMemMult.Rn;
|
|
wBack = opMemMult.PostOffset != 0;
|
|
isLoad = opMemMult.IsLoad;
|
|
}
|
|
else
|
|
{
|
|
throw new NotImplementedException($"The type \"{opCode.GetType().Name}\" is not implemented on the decoder.");
|
|
}
|
|
|
|
if ((rt == RegisterAlias.Aarch32Pc && isLoad) ||
|
|
(rn == RegisterAlias.Aarch32Pc && wBack))
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
|
|
//Explicit branch instructions.
|
|
return opCode is IOpCode32BImm ||
|
|
opCode is IOpCode32BReg;
|
|
}
|
|
|
|
private static bool IsException(OpCode64 opCode)
|
|
{
|
|
return opCode.Emitter == InstEmit.Brk ||
|
|
opCode.Emitter == InstEmit.Svc ||
|
|
opCode.Emitter == InstEmit.Und;
|
|
}
|
|
|
|
public static OpCode64 DecodeOpCode(MemoryManager memory, long position, ExecutionMode mode)
|
|
{
|
|
int opCode = memory.ReadInt32(position);
|
|
|
|
Inst inst;
|
|
|
|
if (mode == ExecutionMode.Aarch64)
|
|
{
|
|
inst = OpCodeTable.GetInstA64(opCode);
|
|
}
|
|
else
|
|
{
|
|
if (mode == ExecutionMode.Aarch32Arm)
|
|
{
|
|
inst = OpCodeTable.GetInstA32(opCode);
|
|
}
|
|
else /* if (mode == ExecutionMode.Aarch32Thumb) */
|
|
{
|
|
inst = OpCodeTable.GetInstT32(opCode);
|
|
}
|
|
}
|
|
|
|
OpCode64 decodedOpCode = new OpCode64(Inst.Undefined, position, opCode);
|
|
|
|
if (inst.Type != null)
|
|
{
|
|
decodedOpCode = MakeOpCode(inst.Type, inst, position, opCode);
|
|
}
|
|
|
|
return decodedOpCode;
|
|
}
|
|
|
|
private static OpCode64 MakeOpCode(Type type, Inst inst, long position, int opCode)
|
|
{
|
|
if (type == null)
|
|
{
|
|
throw new ArgumentNullException(nameof(type));
|
|
}
|
|
|
|
OpActivator createInstance = _opActivators.GetOrAdd(type, CacheOpActivator);
|
|
|
|
return (OpCode64)createInstance(inst, position, opCode);
|
|
}
|
|
|
|
private static OpActivator CacheOpActivator(Type type)
|
|
{
|
|
Type[] argTypes = new Type[] { typeof(Inst), typeof(long), typeof(int) };
|
|
|
|
DynamicMethod mthd = new DynamicMethod($"Make{type.Name}", type, argTypes);
|
|
|
|
ILGenerator generator = mthd.GetILGenerator();
|
|
|
|
generator.Emit(OpCodes.Ldarg_0);
|
|
generator.Emit(OpCodes.Ldarg_1);
|
|
generator.Emit(OpCodes.Ldarg_2);
|
|
generator.Emit(OpCodes.Newobj, type.GetConstructor(argTypes));
|
|
generator.Emit(OpCodes.Ret);
|
|
|
|
return (OpActivator)mthd.CreateDelegate(typeof(OpActivator));
|
|
}
|
|
}
|
|
} |