mirror of
https://github.com/Cronocide/fitbit-web-ui-app.git
synced 2025-01-22 11:29:03 +00:00
Graphs improved and summary tables added
This commit is contained in:
parent
1dc6f6e6be
commit
9bcbe8fc2d
113
src/app.py
113
src/app.py
@ -1,7 +1,7 @@
|
||||
# %%
|
||||
import dash, requests, math
|
||||
import dash, requests
|
||||
from dash import dcc
|
||||
from dash import html
|
||||
from dash import html, dash_table
|
||||
from dash.dependencies import Output, State, Input
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
@ -16,7 +16,8 @@ server = app.server
|
||||
|
||||
app.layout = html.Div(children=[
|
||||
|
||||
html.Div(style={
|
||||
html.Div(className="hidden-print",
|
||||
style={
|
||||
'display': 'flex',
|
||||
'align-items': 'center',
|
||||
'justify-content': 'center',
|
||||
@ -29,7 +30,7 @@ app.layout = html.Div(children=[
|
||||
id='my-date-picker-range',
|
||||
minimum_nights=40,
|
||||
max_date_allowed=datetime.today().date() - timedelta(days=1),
|
||||
min_date_allowed=datetime.today().date() - timedelta(days=720),
|
||||
min_date_allowed=datetime.today().date() - timedelta(days=1000),
|
||||
end_date=datetime.today().date() - timedelta(days=1),
|
||||
start_date=datetime.today().date() - timedelta(days=365)
|
||||
),
|
||||
@ -45,7 +46,7 @@ app.layout = html.Div(children=[
|
||||
),
|
||||
]),
|
||||
|
||||
html.Div(id='output_div', children=[
|
||||
html.Div(id='output_div', style={'max-width': '1400px', 'margin': 'auto'}, children=[
|
||||
|
||||
html.Div(id='report-title-div',
|
||||
style={
|
||||
@ -58,51 +59,104 @@ app.layout = html.Div(children=[
|
||||
html.H4(id="date-range-title", style={'font-weight': 'bold'}),
|
||||
html.P(id="generated-on-title", style={'font-weight': 'bold', 'font-size': '16'})
|
||||
]),
|
||||
|
||||
html.Div(style={"height": '40px'}),
|
||||
html.H4("Resting Heart Rate", style={'font-weight': 'bold'}),
|
||||
html.H6("Resting heart rate (RHR) is derived from a person's average sleeping heart rate. Fitbit tracks heart rate with photoplethysmography. This technique uses sensors and green light to detect blood volume when the heart beats. If a Fitbit device isn't worn during sleep, RHR is derived from daytime sedentary heart rate. According to the American Heart Association, a normal RHR is between 60-100 beats per minute (bpm), but this can vary based upon your age or fitness level."),
|
||||
dcc.Graph(
|
||||
id='graph_RHR',
|
||||
figure=px.line(),
|
||||
config= {'displaylogo': False}
|
||||
),
|
||||
|
||||
html.Div(id='RHR_table', style={'max-width': '1200px', 'margin': 'auto', 'font-weight': 'bold'}, children=[]),
|
||||
html.Div(style={"height": '40px'}),
|
||||
html.H4("Steps Count", style={'font-weight': 'bold'}),
|
||||
html.H6("Fitbit devices use an accelerometer to track steps. Some devices track active minutes, which includes activities over 3 metabolic equivalents (METs), such as brisk walking and cardio workouts."),
|
||||
dcc.Graph(
|
||||
id='graph_steps',
|
||||
figure=px.bar(),
|
||||
config= {'displaylogo': False}
|
||||
),
|
||||
|
||||
dcc.Graph(
|
||||
id='graph_steps_heatmap',
|
||||
figure=px.bar(),
|
||||
config= {'displaylogo': False}
|
||||
),
|
||||
|
||||
html.Div(id='steps_table', style={'max-width': '1200px', 'margin': 'auto', 'font-weight': 'bold'}, children=[]),
|
||||
html.Div(style={"height": '40px'}),
|
||||
html.H4("Activity", style={'font-weight': 'bold'}),
|
||||
html.H6("Heart Rate Zones (fat burn, cardio and peak) are based on a percentage of maximum heart rate. Maximum heart rate is calculated as 220 minus age. The Centers for Disease Control recommends that adults do at least 150-300 minutes of moderate-intensity aerobic activity each week or 75-150 minutes of vigorous-intensity aerobic activity each week."),
|
||||
dcc.Graph(
|
||||
id='graph_activity_minutes',
|
||||
figure=px.bar(),
|
||||
config= {'displaylogo': False}
|
||||
),
|
||||
|
||||
html.Div(id='fat_burn_table', style={'max-width': '1200px', 'margin': 'auto', 'font-weight': 'bold'}, children=[]),
|
||||
html.Div(id='cardio_table', style={'max-width': '1200px', 'margin': 'auto', 'font-weight': 'bold'}, children=[]),
|
||||
html.Div(id='peak_table', style={'max-width': '1200px', 'margin': 'auto', 'font-weight': 'bold'}, children=[]),
|
||||
html.Div(style={"height": '40px'}),
|
||||
html.H4("Weight Log", style={'font-weight': 'bold'}),
|
||||
html.H6("Fitbit connects with the Aria family of smart scales to track weight. Weight may also be self-reported using the Fitbit app. Studies suggest that regular weigh-ins may help people who want to lose weight."),
|
||||
dcc.Graph(
|
||||
id='graph_weight',
|
||||
figure=px.line(),
|
||||
config= {'displaylogo': False}
|
||||
),
|
||||
|
||||
html.Div(id='weight_table', style={'max-width': '1200px', 'margin': 'auto', 'font-weight': 'bold'}, children=[]),
|
||||
html.Div(style={"height": '40px'}),
|
||||
html.H4("SpO2", style={'font-weight': 'bold'}),
|
||||
html.H6("A pulse oximeter reading indicates what percentage of your blood is saturated, known as the SpO2 level. A typical, healthy reading is 95–100% . If your SpO2 level is less than 92%, a doctor may recommend you get an ABG. A pulse ox is the most common type of test because it's noninvasive and provides quick readings."),
|
||||
dcc.Graph(
|
||||
id='graph_spo2',
|
||||
figure=px.line(),
|
||||
config= {'displaylogo': False}
|
||||
),
|
||||
html.Div(id='spo2_table', style={'max-width': '1200px', 'margin': 'auto', 'font-weight': 'bold'}, children=[]),
|
||||
html.Div(style={"height": '40px'}),
|
||||
]),
|
||||
])
|
||||
|
||||
def calculate_table_data(df, measurement_name):
|
||||
df = df.sort_values(by='Date', ascending=False)
|
||||
result_data = {
|
||||
'Period' : ['30 days', '3 months', '6 months', '1 year'],
|
||||
'Average ' + measurement_name : [],
|
||||
'Max ' + measurement_name : [],
|
||||
'Min ' + measurement_name : []
|
||||
}
|
||||
last_date = df.head(1)['Date'].values[0]
|
||||
for period in [30, 90, 180, 365]:
|
||||
end_date = last_date
|
||||
start_date = end_date - pd.Timedelta(days=period)
|
||||
|
||||
period_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
|
||||
|
||||
if len(period_data) >= period:
|
||||
|
||||
max_hr = period_data[measurement_name].max()
|
||||
if measurement_name == "Steps Count":
|
||||
min_hr = period_data[period_data[measurement_name] != 0][measurement_name].min()
|
||||
else:
|
||||
min_hr = period_data[measurement_name].min()
|
||||
average_hr = round(period_data[measurement_name].mean(),2)
|
||||
|
||||
# Add the average to the result DataFrame
|
||||
result_data['Average ' + measurement_name].append(average_hr)
|
||||
result_data['Max ' + measurement_name].append(max_hr)
|
||||
result_data['Min ' + measurement_name].append(min_hr)
|
||||
else:
|
||||
result_data['Average ' + measurement_name].append(pd.NA)
|
||||
result_data['Max ' + measurement_name].append(pd.NA)
|
||||
result_data['Min ' + measurement_name].append(pd.NA)
|
||||
|
||||
return pd.DataFrame(result_data)
|
||||
|
||||
# Limits the date range to one year max
|
||||
@app.callback(Output('my-date-picker-range', 'max_date_allowed'), Output('my-date-picker-range', 'end_date'),
|
||||
[Input('my-date-picker-range', 'start_date')])
|
||||
def set_max_date_allowed(start_date):
|
||||
start = datetime.strptime(start_date, "%Y-%m-%d")
|
||||
max_end_date = start + timedelta(days=365)
|
||||
current_date = datetime.today().date() - timedelta(days=1)
|
||||
max_end_date = min((start + timedelta(days=365)).date(), current_date)
|
||||
return max_end_date, max_end_date
|
||||
|
||||
# Disables the button after click and starts calculations
|
||||
@ -111,11 +165,10 @@ def disable_button_and_calculate(n_clicks):
|
||||
return True, True, True
|
||||
|
||||
# fetch data and update graphs on click of submit
|
||||
@app.callback(Output('report-title', 'children'), Output('date-range-title', 'children'), Output('generated-on-title', 'children'), Output('graph_RHR', 'figure'), Output('graph_steps', 'figure'), Output('graph_steps_heatmap', 'figure'), Output('graph_activity_minutes', 'figure'), Output('graph_weight', 'figure'), Output('graph_spo2', 'figure'), Output("loading-output-1", "children"),
|
||||
@app.callback(Output('report-title', 'children'), Output('date-range-title', 'children'), Output('generated-on-title', 'children'), Output('graph_RHR', 'figure'), Output('RHR_table', 'children'), Output('graph_steps', 'figure'), Output('graph_steps_heatmap', 'figure'), Output('steps_table', 'children'), Output('graph_activity_minutes', 'figure'), Output('fat_burn_table', 'children'), Output('cardio_table', 'children'), Output('peak_table', 'children'), Output('graph_weight', 'figure'), Output('weight_table', 'children'), Output('graph_spo2', 'figure'), Output('spo2_table', 'children'), Output("loading-output-1", "children"),
|
||||
Input('submit-button', 'disabled'),
|
||||
State('input-on-submit', 'value'), State('my-date-picker-range', 'start_date'), State('my-date-picker-range', 'end_date'),
|
||||
prevent_initial_call=True
|
||||
)
|
||||
prevent_initial_call=True)
|
||||
def update_output(n_clicks, value, start_date, end_date):
|
||||
|
||||
start_date = datetime.fromisoformat(start_date).strftime("%Y-%m-%d")
|
||||
@ -136,7 +189,7 @@ def update_output(n_clicks, value, start_date, end_date):
|
||||
|
||||
# Processing data-----------------------------------------------------------------------------------------------------------------------
|
||||
days_name_list = ('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday','Sunday')
|
||||
report_title = "Wellness report - " + user_profile["user"]["firstName"] + " " + user_profile["user"]["lastName"]
|
||||
report_title = "Wellness Report - " + user_profile["user"]["firstName"] + " " + user_profile["user"]["lastName"]
|
||||
report_dates_range = datetime.fromisoformat(start_date).strftime("%d %B, %Y") + " – " + datetime.fromisoformat(end_date).strftime("%d %B, %Y")
|
||||
generated_on_date = "Report Generated :" + datetime.today().date().strftime("%d %B, %Y")
|
||||
dates_list = []
|
||||
@ -188,12 +241,14 @@ def update_output(n_clicks, value, start_date, end_date):
|
||||
non_zero_steps_df = df_merged[df_merged["Steps Count"] != 0]
|
||||
df_merged["Total Active Minutes"] = df_merged["Fat Burn Minutes"] + df_merged["Cardio Minutes"] + df_merged["Peak Minutes"]
|
||||
rhr_avg = {'overall': round(df_merged["Resting Heart Rate"].mean(),1), '30d': round(df_merged["Resting Heart Rate"].tail(30).mean(),1)}
|
||||
steps_avg = {'overall': round(non_zero_steps_df["Steps Count"].mean(),0), '30d': round(non_zero_steps_df["Steps Count"].tail(30).mean(),0)}
|
||||
steps_avg = {'overall': int(df_merged["Steps Count"].mean()), '30d': int(df_merged.sort_values(by='Date', ascending=False)["Steps Count"].head(31).mean())}
|
||||
weight_avg = {'overall': round(df_merged["weight"].mean(),1), '30d': round(df_merged["weight"].tail(30).mean(),1)}
|
||||
spo2_avg = {'overall': round(df_merged["SPO2"].mean(),1), '30d': round(df_merged["SPO2"].tail(30).mean(),1)}
|
||||
active_mins_avg = {'overall': round(df_merged["Total Active Minutes"].mean(),2), '30d': round(df_merged["Total Active Minutes"].tail(30).mean(),2)}
|
||||
weekly_steps_array = np.array([0]*days_name_list.index(datetime.fromisoformat(start_date).strftime('%A')) + df_merged["Steps Count"].to_list() + [0]*(6 - days_name_list.index(datetime.fromisoformat(end_date).strftime('%A'))))
|
||||
weekly_steps_array = np.transpose(weekly_steps_array.reshape((int(len(weekly_steps_array)/7), 7)))
|
||||
weekly_steps_array = pd.DataFrame(weekly_steps_array, index=days_name_list)
|
||||
|
||||
# Plotting data-----------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
fig_rhr = px.line(df_merged, x="Date", y="Resting Heart Rate", line_shape="spline", color_discrete_sequence=["#d30f1c"], title=f"<b>Daily Resting Heart Rate<br><br><sup>Overall average : {rhr_avg['overall']} bpm | Last 30d average : {rhr_avg['30d']} bpm</sup></b><br><br><br>")
|
||||
@ -201,22 +256,38 @@ def update_output(n_clicks, value, start_date, end_date):
|
||||
fig_rhr.add_annotation(x=df_merged.iloc[df_merged["Resting Heart Rate"].idxmin()]["Date"], y=df_merged["Resting Heart Rate"].min(), text=str(df_merged["Resting Heart Rate"].min()), showarrow=False, arrowhead=0, bgcolor="#0b2d51", opacity=0.80, yshift=-15, borderpad=5, font=dict(family="Helvetica, monospace", size=12, color="#ffffff"), )
|
||||
fig_rhr.add_hline(y=df_merged["Resting Heart Rate"].mean(), line_dash="dot",annotation_text="Average : " + str(round(df_merged["Resting Heart Rate"].mean(), 1)), annotation_position="bottom right", annotation_bgcolor="#6b3908", annotation_opacity=0.6, annotation_borderpad=5, annotation_font=dict(family="Helvetica, monospace", size=14, color="#ffffff"))
|
||||
fig_rhr.add_hrect(y0=62, y1=68, fillcolor="green", opacity=0.15, line_width=0)
|
||||
fig_steps = px.bar(df_merged, x="Date", y="Steps Count", title=f"<b>Daily Steps Count<br><br><sup>Overall average : {steps_avg['overall']} steps | Last 30d average : {steps_avg['30d']} steps</sup></b><br><br><br>")
|
||||
rhr_summary_df = calculate_table_data(df_merged, "Resting Heart Rate")
|
||||
rhr_summary_table = dash_table.DataTable(rhr_summary_df.to_dict('records'), [{"name": i, "id": i} for i in rhr_summary_df.columns], style_data_conditional=[{'if': {'row_index': 'odd'},'backgroundColor': 'rgb(248, 248, 248)'}], style_header={'backgroundColor': '#5f040a','fontWeight': 'bold', 'color': 'white', 'fontSize': '14px'}, style_cell={'textAlign': 'center'})
|
||||
fig_steps = px.bar(df_merged, x="Date", y="Steps Count", color_discrete_sequence=["#2fb376"], title=f"<b>Daily Steps Count<br><br><sup>Overall average : {steps_avg['overall']} steps | Last 30d average : {steps_avg['30d']} steps</sup></b><br><br><br>")
|
||||
fig_steps.add_annotation(x=df_merged.iloc[df_merged["Steps Count"].idxmax()]["Date"], y=df_merged["Steps Count"].max(), text=str(df_merged["Steps Count"].max())+" steps", showarrow=False, arrowhead=0, bgcolor="#5f040a", opacity=0.80, yshift=15, borderpad=5, font=dict(family="Helvetica, monospace", size=12, color="#ffffff"), )
|
||||
fig_steps.add_annotation(x=non_zero_steps_df.iloc[non_zero_steps_df["Steps Count"].idxmin()]["Date"], y=non_zero_steps_df["Steps Count"].min(), text=str(non_zero_steps_df["Steps Count"].min())+" steps", showarrow=False, arrowhead=0, bgcolor="#0b2d51", opacity=0.80, yshift=-15, borderpad=5, font=dict(family="Helvetica, monospace", size=12, color="#ffffff"), )
|
||||
fig_steps.add_hline(y=non_zero_steps_df["Steps Count"].mean(), line_dash="dot",annotation_text="Average : " + str(round(df_merged["Steps Count"].mean(), 1)), annotation_position="bottom right", annotation_bgcolor="#6b3908", annotation_opacity=0.8, annotation_borderpad=5, annotation_font=dict(family="Helvetica, monospace", size=14, color="#ffffff"))
|
||||
fig_steps_heatmap = px.imshow(weekly_steps_array, color_continuous_scale='YLGn', origin='lower', title="<b>Weekly Steps Heatmap</b>", labels={'x':"Week Number", 'y': "Day of the Week"}, height=350, aspect='equal')
|
||||
fig_steps_heatmap.update_traces(colorbar_orientation='h', selector=dict(type='heatmap'))
|
||||
fig_activity_minutes = px.bar(df_merged, x="Date", y=["Fat Burn Minutes", "Cardio Minutes", "Peak Minutes"], title=f"<b>Activity Minutes<br><br><sup>Overall average : {active_mins_avg['overall']} minutes | Last 30d average : {active_mins_avg['30d']} minutes</sup></b><br><br><br>")
|
||||
steps_summary_df = calculate_table_data(df_merged, "Steps Count")
|
||||
steps_summary_table = dash_table.DataTable(steps_summary_df.to_dict('records'), [{"name": i, "id": i} for i in steps_summary_df.columns], style_data_conditional=[{'if': {'row_index': 'odd'},'backgroundColor': 'rgb(248, 248, 248)'}], style_header={'backgroundColor': '#072f1c','fontWeight': 'bold', 'color': 'white', 'fontSize': '14px'}, style_cell={'textAlign': 'center'})
|
||||
fig_activity_minutes = px.bar(df_merged, x="Date", y=["Fat Burn Minutes", "Cardio Minutes", "Peak Minutes"], title=f"<b>Activity Minutes<br><br><sup>Overall total active minutes average : {active_mins_avg['overall']} minutes | Last 30d total active minutes average : {active_mins_avg['30d']} minutes</sup></b><br><br><br>")
|
||||
fig_activity_minutes.update_layout(yaxis_title='Active Minutes', legend=dict(orientation="h",yanchor="bottom", y=1.02, xanchor="right", x=1, title_text=''))
|
||||
fat_burn_summary_df = calculate_table_data(df_merged, "Fat Burn Minutes")
|
||||
fat_burn_summary_table = dash_table.DataTable(fat_burn_summary_df.to_dict('records'), [{"name": i, "id": i} for i in fat_burn_summary_df.columns], style_data_conditional=[{'if': {'row_index': 'odd'},'backgroundColor': 'rgb(248, 248, 248)'}], style_header={'backgroundColor': '#636efa','fontWeight': 'bold', 'color': 'white', 'fontSize': '14px'}, style_cell={'textAlign': 'center'})
|
||||
cardio_summary_df = calculate_table_data(df_merged, "Cardio Minutes")
|
||||
cardio_summary_table = dash_table.DataTable(cardio_summary_df.to_dict('records'), [{"name": i, "id": i} for i in cardio_summary_df.columns], style_data_conditional=[{'if': {'row_index': 'odd'},'backgroundColor': 'rgb(248, 248, 248)'}], style_header={'backgroundColor': '#ef553b','fontWeight': 'bold', 'color': 'white', 'fontSize': '14px'}, style_cell={'textAlign': 'center'})
|
||||
peak_summary_df = calculate_table_data(df_merged, "Peak Minutes")
|
||||
peak_summary_table = dash_table.DataTable(peak_summary_df.to_dict('records'), [{"name": i, "id": i} for i in peak_summary_df.columns], style_data_conditional=[{'if': {'row_index': 'odd'},'backgroundColor': 'rgb(248, 248, 248)'}], style_header={'backgroundColor': '#00cc96','fontWeight': 'bold', 'color': 'white', 'fontSize': '14px'}, style_cell={'textAlign': 'center'})
|
||||
fig_weight = px.line(df_merged, x="Date", y="weight", line_shape="spline", color_discrete_sequence=["#6b3908"], title=f"<b>Weight<br><br><sup>Overall average : {weight_avg['overall']} Unit | Last 30d average : {weight_avg['30d']} Unit</sup></b><br><br><br>")
|
||||
fig_weight.add_annotation(x=df_merged.iloc[df_merged["weight"].idxmax()]["Date"], y=df_merged["weight"].max(), text=str(df_merged["weight"].max()), showarrow=False, arrowhead=0, bgcolor="#5f040a", opacity=0.80, yshift=15, borderpad=5, font=dict(family="Helvetica, monospace", size=12, color="#ffffff"), )
|
||||
fig_weight.add_annotation(x=df_merged.iloc[df_merged["weight"].idxmin()]["Date"], y=df_merged["weight"].min(), text=str(df_merged["weight"].min()), showarrow=False, arrowhead=0, bgcolor="#0b2d51", opacity=0.80, yshift=-15, borderpad=5, font=dict(family="Helvetica, monospace", size=12, color="#ffffff"), )
|
||||
fig_weight.add_hline(y=round(df_merged["weight"].mean(),1), line_dash="dot",annotation_text="Average : " + str(round(df_merged["weight"].mean(), 1)), annotation_position="bottom right", annotation_bgcolor="#6b3908", annotation_opacity=0.6, annotation_borderpad=5, annotation_font=dict(family="Helvetica, monospace", size=14, color="#ffffff"))
|
||||
fig_spo2 = px.bar(df_merged, x="Date", y="SPO2", title="<b>SPO2 Percentage</b>", range_y=(80,100))
|
||||
weight_summary_df = calculate_table_data(df_merged, "weight")
|
||||
weight_summary_table = dash_table.DataTable(weight_summary_df.to_dict('records'), [{"name": i, "id": i} for i in weight_summary_df.columns], style_data_conditional=[{'if': {'row_index': 'odd'},'backgroundColor': 'rgb(248, 248, 248)'}], style_header={'backgroundColor': '#4c3b7d','fontWeight': 'bold', 'color': 'white', 'fontSize': '14px'}, style_cell={'textAlign': 'center'})
|
||||
fig_spo2 = px.scatter(df_merged, x="Date", y="SPO2", color_discrete_sequence=["#983faa"], title=f"<b>SPO2 Percentage<br><br><sup>Overall average : {spo2_avg['overall']}% | Last 30d average : {spo2_avg['30d']}% </sup></b><br><br><br>", range_y=(90,100))
|
||||
fig_spo2.add_hline(y=df_merged["SPO2"].mean(), line_dash="dot",annotation_text="Average : " + str(round(df_merged["SPO2"].mean(), 1)), annotation_position="bottom right", annotation_bgcolor="#6b3908", annotation_opacity=0.6, annotation_borderpad=5, annotation_font=dict(family="Helvetica, monospace", size=14, color="#ffffff"))
|
||||
fig_spo2.update_traces(marker_size=6)
|
||||
spo2_summary_df = calculate_table_data(df_merged, "SPO2")
|
||||
spo2_summary_table = dash_table.DataTable(spo2_summary_df.to_dict('records'), [{"name": i, "id": i} for i in spo2_summary_df.columns], style_data_conditional=[{'if': {'row_index': 'odd'},'backgroundColor': 'rgb(248, 248, 248)'}], style_header={'backgroundColor': '#8d3a18','fontWeight': 'bold', 'color': 'white', 'fontSize': '14px'}, style_cell={'textAlign': 'center'})
|
||||
|
||||
|
||||
return report_title, report_dates_range, generated_on_date, fig_rhr, fig_steps, fig_steps_heatmap, fig_activity_minutes, fig_weight, fig_spo2, ""
|
||||
return report_title, report_dates_range, generated_on_date, fig_rhr, rhr_summary_table, fig_steps, fig_steps_heatmap, steps_summary_table, fig_activity_minutes, fat_burn_summary_table, cardio_summary_table, peak_summary_table, fig_weight, weight_summary_table, fig_spo2, spo2_summary_table, ""
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run_server(debug=True)
|
||||
|
@ -131,7 +131,7 @@ body {
|
||||
font-size: 1.5em; /* currently ems cause chrome bug misinterpreting rems on body element */
|
||||
line-height: 1.6;
|
||||
font-weight: 400;
|
||||
font-family: "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
|
||||
font-family: Helvetica, Arial, sans-serif;
|
||||
color: rgb(50, 50, 50); }
|
||||
|
||||
|
||||
@ -140,7 +140,10 @@ body {
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 0;
|
||||
margin-bottom: 0;
|
||||
font-weight: 300; }
|
||||
font-weight: 400;
|
||||
max-width: 1330px;
|
||||
margin: auto;
|
||||
}
|
||||
h1 { font-size: 4.5rem; line-height: 1.2; letter-spacing: -.1rem; margin-bottom: 2rem; }
|
||||
h2 { font-size: 3.6rem; line-height: 1.25; letter-spacing: -.1rem; margin-bottom: 1.8rem; margin-top: 1.8rem;}
|
||||
h3 { font-size: 3.0rem; line-height: 1.3; letter-spacing: -.1rem; margin-bottom: 1.5rem; margin-top: 1.5rem;}
|
||||
@ -216,8 +219,8 @@ input[type="submit"].button-primary,
|
||||
input[type="reset"].button-primary,
|
||||
input[type="button"].button-primary {
|
||||
color: #FFF;
|
||||
background-color: #33C3F0;
|
||||
border-color: #33C3F0; }
|
||||
background-color: #108de4;
|
||||
border-color: #028bb4; }
|
||||
.button.button-primary:hover,
|
||||
button.button-primary:hover,
|
||||
input[type="submit"].button-primary:hover,
|
||||
@ -419,4 +422,10 @@ there.
|
||||
@media (min-width: 1000px) {}
|
||||
|
||||
/* Larger than Desktop HD */
|
||||
@media (min-width: 1200px) {}
|
||||
@media (min-width: 1200px) {}
|
||||
|
||||
@media print {
|
||||
.hidden-print {
|
||||
display: none !important;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user